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Abstract

We study a variety of optimal investment problems for objectives related to attaining goals
by afixed terminal time. We start by finding the policy that maximizes the probability of
reaching a given wealth level by a given fixed terminal time, for the case where an investor can
alocate his wealth at any time between n + 1 investment opportunities: n risky stocks, as well
as a risk-free asset that has a positive return.  This generalizes results recently obtained by
Kulldorff and Heath for the case of a single investment opportunity. We then use this to solve
related problems for the following cases: (i) when the investor has an external source of income;
(i1) when the investor faces external liabilities, as arises in pension fund management; and (iii)
when the investor is interested solely in beating the return of a given stochastic benchmark, as
is sometimes the case in institutional money management. One of the benchmarks we consider
for this last problem isthat of the return of the optimal growth policy, for which the resulting
controlled process is a supermartingale. Nevertheless, we still find an optimal strategy. For the
genera case, we provide a thorough analysis of the optimal strategy, and obtain new insights
into the behavior of the optimal policy. For one special case, namely that of a single stock with
constant coefficients, the optimal policy isindependent of the underlying drift. We explain this
by exhibiting aremarkable correspondence between the probability maximizing results and the
pricing and hedging of a particular derivative security, known as a digital or binary option. In
fact, we show that for this case, the optimal policy to maximize the probability of reaching a given
value of wealth by a predetermined time is equivalent to simply buying a European digital option
with a particular strike price and payoff. A similar result holds for the general case, but with
the stock replaced by a particular (index) portfolio, namely the optimal growth or log-optimal
portfolio.
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1 Introduction

There are various approaches to the problem of determining optimal dynamic investment policies,
depending on the objectives of the investor. In continuous time, which is the setting in this paper,
optimal dynamic investment policies for the objective of maximizing expected utility derived from
terminal wealth or consumption over a finite horizon as well as discounted utility of consumption
over. the infinite horizon are derived in the pioneering work of Merton [20]. Karatzas et al. [15],
among others, consider generalizations that incorporate bankruptcies as well as more general price
processes than those considered earlier. These results also have substantial implication for the
pricing and hedging of contingent claims, see for example Karatzas [14] or Cox and Huang [6].

However, there are many investment scenarios where approaches alternative to that of utility
maximization might be preferable. In particular, many actual investment objectives are related
solely to the achievement of specific goals. For example, in institutional money management, the
practice of benchmarking is quite prevalent. In this scenario, a portfolio manager is judged solely by
how his portfolio performs relative to that of another benchmark portfolio, or index. The Standard
and Poor's (S&P) 500 index is a typical example of a benchmark. There is a distinction made
between passive portfolio management, and active portfolio management (see e.g., Sharpe et al.[25]).
A passive portfolio manager is simply interested in tracking the index, while an active portfolio
manager is interested in beating the return of the predetermined given benchmark or index. From
the viewpoint taken here, the passive portfolio manager’s investment decision is uninteresting, since
we assume that for all intents and purposes, a passive portfolio manager can simply invest directly
in the benchmark. The active portfolio manager faces an interesting problem however, since heis
investing in order to beat a“goa”. The goal the active portfolio manager is trying to beat is the
stochastic return of the benchmark. As another example, consider the a pension fund manager who
is faced with a given liability stream, such as payouts to pensioners. The pension fund manager
is interested in ensuring that all the liabilities are met by a given deadline. This is also a goal
problem. In this paper we treat these two among other goal problems.

Optimal investment policies for objectives relating solely to the achievement of goals have
been studied previously, athough perhaps not to the extent that utility maximization has. For
illustration, suppose the investor starts off with initial capital a < X,< b. Then, some classical
problems include determining an investment policy that (if appropriate) maximizes the probability
of reaching b before a, or (if appropriate) minimizes the expected time to the upper goal b. We can
refer to these, respectively, as the survival problem, and the growth problem. In discrete-time, and
over an infinite horizon, the survival problem is the centerpiece of the classical work of Dubins and
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Savage [7], and the growth problem was first studied in Breiman [1] (as an asymptotic property of the
policy first obtained in Kelly [17]). In continuous-time, the survival problem over an infinite horizon
was first solved for diffusion processes in Pestien and Sudderth [23]. Survival problems related
to various generalizations of the portfolio problem of Merton [20] were studied in Browne [3] and
Browne [4], The growth problem in continuous-time was studied in a general framework in Heath et
al. [12], Merton [21, Chapter 6], and generalized to a model that incorporated liabilities in Browne
[4], Gottlieb [10] considered a particular model in which the two objectives were synthesized,
specificaly, minimizing the time to escape from an interval subject to a probability constraint on
leaving the interval in the “right” direction. However, all these results are specific to the case of an
infinite horizon. Since the performance of money managers is not judged over the infinite horizon,
but rather over a finite (sometimes quite short) horizon, these studies are not directly applicable to
the problem of active portfolio management. Similarly, in pension fund management, the horizon
is typically finite. With a finite horizon, the distinction between a survival problem and a growth
problem tends to blur, since in both cases they relate to maximizing probabilities: the survival
problem would be to maximize the probability that the lower goal is not hit before the horizon,
while the growth problem would be to maximize the probability that the upper goal is hit before
the deadline.

A finite-horizon goal problem was studied recently in Kulldorff [19], for a model with a single
risky favorable investment opportunist y. Kulldorff [19] obtained the optimal investment policy for
the objective of maximizing the probability that wealth attains a given constant goal by a fixed
terminal time. The return of the single risky asset was modeled as a Brownian motion with a time-
dependent drift coefficient and a constant diffusion coefficient. The goal as well as the constant
diffusion coefficient were both normalized to one. Heath [11] considered the same model, but with
constant drift as well and gave a different proof of the results in Kulldorff [19]. In both cases, there
was no risk-free asset available other than cash, which had a zero return. One of the interesting
features of their policy was the fact that for the case of a constant drift, the optimal policy was
independent of this underlying drift. No explanation of this rather remarkable fact was given.

In this paper, we address a variety of more general goal problems, all with probability maxi-
mizing objectives. To that end we first generalize the important results of Kulldorff [19] and Heath
[11] in afew fundamental ways: First, we expand the investment opportunity set to include a risk-
free asset that has a positive time-dependent rate of return, as well as multiple risky assets with
time-varying covariance structure. Our derivation and proof of the resulting optimal policy differs
considerably from, and simplifies, that of Kulldorff [19] —we first obtain a candidate optimal value
function by applying an extended version of the elegant argument in Heath [11], and then apply
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a new verification argument. We then extend our general results to treat the following cases: (i)
where the investor earns income from an exogenous source; (ii) where the investor has an external
liability stream, or forced consumption, asis the case in pension fund management; and (iii) where
the investor’s objective is to beat the (stochastic) return of a given benchmark portfolio.

The explanation as to why the optimal policy is independent of the underlying drift for the
single stock case with constant coefficients is provided as a byproduct of our analysis for the
more general case. It turns out that when there are multiple risky stocks, the optimal policy,
for maximizing the probability of attaining a preset level of wealth by a finite deadline, is no
longer independent of the drift parameters, even for the case of constant coefficients. The resulting
policy is quite interesting and we provide a new analysis that allows for a complete quantitative
assessment of the risk-taking behavior of an investor following such an objective. Furthermore,
we obtain a new representation of the optimal wealth process. This represent at ion, together with
the addition of a risk-free asset, allows us to exhibit a remarkable correspondence between the
probability maximizing policy and the hedging strategy of a digital option for the single-stock
constant coefficients case. In particular we show that the optimal dynamic investment strategy for
the objective of maximizing the probability of reaching a given goal by a fixed terminal time is
completely equivalent to the (static) investment strategy which simply purchases a European digital

call option on the underlying stock, with a particular strike price and payoff. This result is of

independent interest since it provides an example where a policy which is optimal for an objective
stated on wealth, is equivalent to the purchase of an option on the underlying stock. Moreover, it
also implicitly contains the explanation as to why the optimal policy is independent of the drift in
the constant coefficients single-stock case. For the general case, we are able to show a similar resullt,
however with the single stock replaced by the return of a particular portfolio policy: the optimal
growth, or log-optimal portfolio. Specifically, we will show that the probability maximizing policy
is completely equivlaent to purchasing a European digital option on the return of the log-optimal
portfolio.

A summary and outline of the remainder of the paper is as follows: In the next section, we
introduce the basic model with multiple stocks and a risk-free asset with positive return. In
Section 3 we provide the optimal policy for the problem of maximizing the probability of reaching
the goal by terminal time 7" < oo, as well as the new representation of the optimal wealth under this
policy (Corollary 3.2 below). The proof is delayed until Section 6. In Section 4, we then use this
representation to show the correspondence between the single stock case with constant coefficients
and a digital option on the stock, as well as the correspondence with the digital option on the
log-optimal portfolio in the genera case,
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In Section 5, we analyze the optimal policy for the general case. We first show that the optimal
policy can be interpreted as a linear function of wealth, where the coefficient decomposes into the
product of two distinct factors. (1) a purely time-dependent risk factor, which is determined solely
by the risk premiums of the stocks and the time remaining until the deadline; and (2) a purely
state-dependent function which is parameterized solely by the current percentage of the distance to
the (in our case, time-dependent) goal achieved. As intuition would suggest, the former function
typically increases as the horizon decreases, while the latter function decreases as the percentage
increases. The optimal policy istherefore a dynamic portfolio strategy that continuously rebalances
the portfolio weights depending upon how much time remains to the deadline as well as how close
the current wealth is to the goal. The interplay between these two factors is analyzed to a fairly
explicit extent next when we analyze the region where borrowing takes place. It turns out that
this region is determined by a single equation involving the “risk-adjusted” remaining time, and
the percentage of the goal achieved to that point.

In Section 7 we consider the case where the investor earns income from an external source
other than trading gains. We show that contrary to utility maximizing strategies — where an
investor uses the exogenous income to take a more risky position in stocks than he would otherwise
— a “probability maximizing” investor relies on this exogenous income to be more cautious. In
particular, we show that external income causes the investor to incorporate a performance bound:
if the performance of the stocks is such that wealth ever falls to the level that could have been
achieved by simply investing all the previous income into the risk-free asset, then al investment in
the risky stocks ceases.

In Section 8, we consider the case where the investor has a given liability stream that must be
met, as is the case in pension fund management. In this case it is possible for wealth to become
negative due to the external liabilities. We find the optimal policy for maximizing the probability
of reaching a preset level of wealth, subject to the regulatory constraint that reserves are always
greater than the discounted value of the future liabilities.

In Section 9, we consider the case where the investor’s goal is to beat the return of a given
(stochastic) benchmark by a prespecified amount by a predetermined time. We also find the related
policy that allows the investor to control for the downside risk. When the stochastic benchmark is
given by the optimal growth policy, or equivalently, the policy that maximizes logarithmic utility,
which is sometimes referred to as the market portfolio in continuous-time finance, then certain
complications arise. Specifically, it is well known that the ratio of the return from any arbitrary
portfolio strategy to the return generated by the optimal growth strategy is a nonnegative local
martingale, hence a supermartingale (see, e.g., Karatzas [14, Section 9.6]). Nevertheless, we find
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a policy that does achieve the theoretical upper bound on the probability of beating the return of
the optimal growth by a predetermined amount, and is hence an optimal policy.

2 The Model

The model under consideration here is that of a complete market as in Merton [20, 21], Karatzas
[14] and others, wherein there are n (correlated) risky assets generated by n independent Brownian
motions. The prices of these stocks are assumed to evolve as

n .
dSi(t) = Si(t) | mt)dt + 3030w | i=1,...,n, (2.1)
j=1
where p;(t),0:;(t) are deterministic functions, for ¢,j,= 1,...,n, and ¢ > 0, and where W, :=
(Wt(l), cee (Wt("))’ is a standard n-dimensional Brownian motion, defined on the complete proba-

bility space (2, F, P), where {F;,t > 0} is the P-augmentation of the natural filtration .7-}W =
0{W ;0 < s < t}. Thus the stock prices follow a correlated time-dependent geometric Brownian
motion in R™.

There is also a riskless asset whose price, B;, evolves according to
dB; = r(t)Bydt . (2.2)

Let {f;,0 <t < T} denote a vector control process where f, = ( t(l), ceey t("))l. The interpre-
tation of ft(i) is the total amount of money invested in the i-th stock at time t. It is assumed that
f: is admissible, in that f, is a nonanticipating, F;-adapted process that satisfies f(f fifeds < oo
for all ¢.

Let th denote the wealth of the investor at time ¢, under an investment policy {f,}, with
Xo = z. Since any amount not invested in the risky stock is held in the bond, this wealth process

then evolves as
5 dS; (t) dB
dth _ E: () zl(t ( Z (1)) a5

[ t)Xt+Z O (i) —r t))] dt+zz @i (1) AW (2.3)

i=1 j=

upon substituting from (2.1) and (2.2).
If we introduce now the matrix functions o(t) = (c(t));;, and the (column) vectors u(t) =
(p1(t), ..., ua(t))', 1= (1,...,1), and then set X(t) = o(t)o(t)’, we may rewrite (2.3) as

ax{ = [r&)X{ + fi (u(t) — r(O1)] dt + flo(B)AW . (2.4)

5
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For Markov control processes {f,} and functions ¥(¢, z) € C12, we may therefore write the gener-
ator of the (one-dimensional) wealth process as

AT Ut 2) = Uy + (r()z + FL(1(E) — 1(B)1)) Ua + = F1 ) F1 ¥ (25)

The assumption of completeness implies that o~1(t), and hence, X ~1(t) exists.
The fundamental vector O(t), defined by

0(t) := o~} (t)(n(t) — r(t)1) (2.6)

plays a pivotal role here since then according to the Girsanov theorem (cf. [16, Section 3.3.5]) the
vector process

W, =W+ /0 “0(s)ds 2.7)

is an n dimensional standard Brownian motion under the measure P, where P is the measure

defined by

dP(“’ {/ 0(s)'dW s + = / 6(s)6(s }z exp{/OTO(s)’dVVS - %/()To(s)'e(s) ds} .
(2.8)
The measure P is sometimes referred to as the risk-neutral (or equivalent martingale) measure,
and the vector q (t) isaso called the vector of risk premiums, or the market price of risk.
In the next section, we will give the optimal policy for the problem of maximizing the probability
that terminal wealth exceeds a predetermined level at the predetermined time T. The proof of this
theorem will be deferred until later, in Section 6.

3 Maximizing the probability of reaching a goal in finite-time

In this section, we present the optimal value function and optimal investment policy for maximizing
the probability that terminal wealth at time T exceeds a given threshold b, with Xy < b.

Let Py 4)(-) =P ( |th = x), and for any admissible policy f, let V/(t,z;b) := P 2 (X% > b).
In the following theorem, we give the optimal value function V (¢, z;b) := sup feg V/(t,z;b) as well
as the associated optimal control policy fi = argsup feg VI (t,z;b), where G denotes the set of

admissible controls, for an investor whose wealth process evolves according to (2.3).

Remark on notation: For the sequel, ®(-) is the CDF of a standard normal variate, and ¢(-) is
the associated PDF.
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Theorem 3.1 For {th,O <t £ T} given by (2.3), let V(t,z;b) = SUp fegPlt,z) (X% > b), with

optimal control vector f;. Then

V(t,z;b) =@ (qu (%eff "<8>d8) + \/Z T0(s)’0(s) ds) (3.)

and the optimal policy is

=14y T T
* ‘b) = o (t) O(t) ] b —L r(s)ds o-! E ft r(s)ds . 39
Fis®) [\/ftTO(s)’O(s) ds ‘ ¢< (be )) (32)

T
Remark 3.1: Since ®~!(u) = oo for u > 1, (3.1) shows that for z > be~ e r(8)ds  we would have
V(t,z;b) = 1, and correspondingly, (3.2) shows that we would in that case have f; = 0,

where 0 = (0,0, ...,0)', whereby all the investor’s wealth will be invested in the riskless asset.

This is due, of course, to the fact that when there is a risk-free asset available for investment
that has a positive return of r(t) per unit time, the problem of reaching the goal b at time
T from the state (t,z) (i.e., from wealth X; = z) is nontrivial and interesting only for the

T T
case where @ < be~J 79 for if the converse holds, i.e., & > be~Je 7%

, then the simple
strategy of placing all the current (time t) wealth into the bond will yield a terminal wealth
of xeftT n($)s which would in turn beat the goal b with probability one. Thus ensuring that
terminal wealth at time T exceeds the fixed level b is equivalent to ensuring that for some

T
t < T, wealth exceeds the time-dependent level be=J: r(s)ds e,

T
P( sup XI > b) =P (th >be~Je "% for some ¢ < T) .
0<s<T

If in Theorem 3.1 we take n = 1,b = 1, as well as r(s) = 0, and o(s) = 1 for all s, then we
recover the results of Kulldorff [19, Theorem 7]. Heath [11] used a different methodology to
treat the constant coefficients version of the problem, with u(s) = u, r = 0.

Remark 3.2: Constant Coefficients. For the case of constant coefficients, i.e., when o(t) =

o, u(t) = p, and r(t) = r, for all ¢, the results of Theorem 3.1 reduce to

V(t, z;b) = & (qu (%e’(T't)) /08T - t)) (3.3)

and the optimal policy is

fi(z;d) = [M} be~"T~t) ¢ (@"1 (%er(T_t))) (3.4)

\/OO(T —t)
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where @ = o~!(p —~ r1) is a constant vector. Note that for this case, when n = 1 (and so

there is only one risky stock), then § = £2%, and the optimal control f; reduces to

fr(@:b) = [;ﬁ] be—" 1)) (cp—l (%e’(T_t)>) . (35)

It is important to note that it is only for this single-stock case that the optimal control is
in fact independent of the underlying drift parameter asis apparent from (3.5). In this
case, the investor always invests less in the risky stock when there is a risk-free asset with
r > 0 than he would in the corresponding case with r = O, treated earlier in [19] and [11].
This follows directly from the fact that for any a > 0, e™%¢ (2e%) < ¢(2), for any 2. (In the
general case, this may or may not be true, depending on the relationship between r(s), w(s)
and s (s).) Aswe will show in the next section, the policy of (3.5) is intimately connected to
the hedging strategy for a particular type of derivative security known as a digital option.

3.1 The Optimal Wealth Process

When the control function f; is placed back into the evolutionary wealth equation (2.4), we obtain

an optimal wealth process, {X},0 <t < T}, that satisfies the stochastic differential equation

ax; = [r(t)xu OLYO) __pe- J7 rishg (@‘1 (x: {be—ff“s)‘“]_l)ﬂdt

\/ ftT 6(s)'0(s)ds

_wedrom (q)_l (Xt* e f’Tr(s)ds]_l» 6(t)dW,, for t<T. (36)
1T 0(s)0(s)ds )

We will show later that the solution to this stochastic differential equation is given by the
following corollary.

Corollary 3.2 The optimal wealth process, X}, for 0 <t < T, is given by

J58(s)dW s + [ 0(s)0(s)ds + \/ 1T 9(s)6(s)ds & (%Qe foTr(s)ds)

\/f? 6(s)'8(s)ds

This representation provides the link between the probability maximizing objective and the

Xt* — be_ LT T(S)d3¢

(3.7)

constant coefficient case that the policy is independent of the underlying dirft. We discuss this
directly in the next section. After that, we return to analyze the optimal policy in explicit detail.
The proof of Theorem 3.1 will then be provided in the following section. After that we examine
cases that include income as well as liabilities, and conclude with the the problem of beating an

index.
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4  Connections with Digital Options
4.1 Constant Coefficients

Consider a Black-Scholes [2] world with a single stock whose price, S, follows the stochastic differ-

ential equation

dSt = }LStdt -+ O'Stth (41)

as well as a risk-free asset with constant return r.

A digital (or binary) option on this stock, with strike price K and payoff B, is a contract that
pays $B at time T if Sp > K. Thus a digital option amounts to a straight bet on the terminal
price of the underlying stock, Thisis a particular example of an ‘exotic’ option that is discussed in
most standard references on options, such as Hull [13] or Wilmott et al. [27]. Digital options are
currently traded over the counter.

Let C(t, S) denote the current rational price of such an option. Then, a standard Black-Scholes
pricing argument shows that

Ct.5) = BerT03 (m (%)+ CE: 1o?) (T - t)) | 42

T-1

The underwriter of such an option (i.e., the party that agrees to pay $B at Tif S >K) is
interested in hedging its risk. A dynamic hedging strategy for the writer of such an option is a
dynamic investment policy, say {A:,t < T}, which holds A; shares of the underlying stock at time
t so as to ensure that the underwriter’s position is riskless at all times. It is also well known that
this hedging, or replicating, strategy is given by A; = Ca(t, S;), where Ca(t, z) = <. It is easy to
see that the hedging strategy for the digital option is simply

n(8) 4+ (r— 102) (T -
Ay = Be " T (1 (K) +g(,/T .2. t ) = t)) S0 1,——T = (4.3)

Observe that since At is the number of shares of the underlying stock the investor holds at time t,
the actual amount of money invested in the stock at time ¢ is A, - 5.

General treatment of options that discuss pricing and hedging of various options, including the
digital and the derivation of (4.2) and (4.3) can be found in such basic texts as [13] and [27]. A
valuable source for more theoretical issuesisthe survey by Karatzas [14].

To see the connection with our problem, consider an investor who at time t has sold this digital
option for the Black-Scholes price of C(t, &), and suppose the investor will then invest the proceeds
in such a manner as to maximize the probability that he can pay off the claim of this option at time



=703

For an electronic copy of this paper, please visit: http://ssrn.com/abstract

T, i.e, for al intents and purposes, the investor's "wealth" at time tis C(t,S), and the investor
will then invest this wealth so as to maximize the probability that the terminal fortune from this
strategy is equal to B. Our previous results show that the optimal policy is at time tis given by
f of (3.5) with x = C(t, S;) and b = B, i.e., by f*(C(t,St); B). But placing C(t, S;) of (4.2) into
(3.5) with b = B and simplifying gives

f1(C(t,8);B) = Be"(T't)qs(q)-l (&é&)er@-@)) 1

ovT —1t
S, 1.2
— Be—r(T—t)¢ In (T(‘) + T; 2° ) (T _ t) 1
oVl —1t } ovT —t
= At . St (44)

where A; is given by (4.3). Thus, in this case, f;* is equivalent to the hedging strategy of the digital
option.

Moreover, if we specialize the representation of the optimal wealth process given in Corollary 3.2,
i.e. X} of (3.7), to the single stock case with constant coefficients, we find that

oW + (u—r)t+ovVTd? (Xoe’"T/B) )

VT =1 (45)

is the wealth of an investor at time ¢ who started off with initial wealth X and is investing so as

X} = Be"T- 99 (

to maximize the probability of his terminal time T wealth being equal to B.
Observe now that by (4.1) we have

1
S =580 ~exp{(u - 502) t+ aWt}
from which we may infer that
1
oWi + (u — )t = In(S:/So) — (7" - 502) t.

When this is placed back into (4.5), it yields the following representation of the optimal wealth

process in terms of the underlying stock price

In (S¢/Sa) — (r - %02) t+oVT @71 (Xoe"T/B))

Tt (46)

Note that there is no explicit dependence on in (4.6). If the investor's initial wealth is taken to
be the Black-Scholes price of the digital option at time 0, i.e., take Xo = C(0, So), where C(-,-) is
given by (4.2), then it is seen that (4.6) reduces to

Xy =Be T %% (

X, =C5)

10
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where C(t, S;) is given by (4.2), i.e., the optimal wealth process under policy f} is just the Black-
Scholes price for a digital option with payoff B !

It is interesting to note that the Black-Scholes value (4.2) and its resulting hedging strategy
(4.3) are both calculated and determined by the risk-neutral probability measure (under which is
replaced by r), while the optimal strategy for maximizing the probability y of terminal wealth being
greater than B was determined under the regular measure.

The analysis above can be inverted to show the following rather interesting fact:

Proposition 4.1 Consider an investor, with initial wealth X, whose objective is to maximize the
probability that terminal wealth at time T exceed some fixed level B, and who has the following two
investment opportunities — the risky stock & of (4.1) and a bond with constant return r. Then
investing according to the dynamically optimal policy {f},0 <t < T} of (3.5) is equivalent to the
static policy that purchases (at time O) one European call digital option with payoff B and strike
price K*, where K* is given by

K* = S~ exp {(r - %&’) T - ovVT &~ (Xoe'T /B)} . 47)

Proof: The representation of the optimal wealth process under f, i.e., X; of (4.6), shows that,
for a fixed Xo, the event {X} > B} is equivalent to the event {Sp > K*}. [
Note that (4.7) is equivalent to

Xo— Be-'Ta (1n (%}) -;\(/T‘T— %02) T) |

which when compared with (4.2) shows that X is simply the Black-Scholes price at time ¢ = 0 of

adigital option with payoff B and strike price K*.

Remark 4.1: It is important to note that the results of this section are specific to the constant
coefficient case in one-dimension and do not generalize to the time-dependent case in even
one-dimension, nor to the multi-dimensional constant-coefficient case. The reason for thisis
that it is only for the constant coefficients one-dimensional case that the representation of X;
of (3.7) reduces to the form in (4.6), whereby we see that X is determined completely by the
current value of the underlying stock. As such, we can represent the event {X} > B} in terms
of a corresponding simple event determined by S, alone, which leads to the equivalence with
the digital option, whose price must be independent of mby risk neutral valuation arguments.
For more general cases, this does not occur. However, as we will show directly, the general
case is intimately connected to a digital option on a particular portfolio, namely the growth-
optimal portfolio.
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4.2 The General Case: Optimal Growth and Digital Options

For the general model considered earlier, let wf denote the vector

wr = X7Ne) [u@) - r(t)1] = 71 ()0(t). (4.8)

The corresponding specific portfolio policy {f7 }, where f7 (z) = m} - z, is the policy that max-
imizes logarithmic utility of wealth and also maximizes the growth rate of wealth (cf. Merton [21,

Chapter 6], Karatzas {14, Section 9.6], Browne and Whitt [5]). For the case of constant coefficients,

it is also optimal for minimizing the expected time to reach any specific level of wealth (i
horizon setting) (cf. Heath et al. [12], Merton [21], Browne [4]). As such, {n}} is referred to as
the optimal growth policy. It is also sometimes referred to as the market portfolio (from CAPM

considerations).

Let II; denote the corresponding “wealth” under policy w}. Then taking f, = =, - th and
th = II; in (2.4) shows that II, satisfies the linear stochastic differential equation

dIl, = II; [r(t) + 6(t)'0(t)] dt + I1,0(t)'dW,

and as such we have

II, = Mg exp { /0 ’ [r(s) + %0(3)'0(3)] ds + /0 t 0(s)'dWs} . (4.9)

We can also represent the wealth process under the optimal growth policy in terms of the change-
of-measure of (2.8) by
ft r(s)ds dp
I1; = Igelo E —~|ft .

dpP
The main result of this section is that the optimal policy of Theorem 3.2 is equivalent to the
hedging strategy for a digital option on p ., and so the optimal wealth process of Corollary 3.2
is therefore equivalent to the Black-Scholes price on this option. Before we state this formally,

recognize that for every t > 0, the optimal growth portfolio, II;, is equivalent in distribution to the
process II;, where

dfi, = 11, [r(t) + af(t)] dt + I\ /o2(t) dW, (4.10)
where W, is an independent Brownian motion (in R!), and o2 (t) is defined by
o2(t) := 0(t)0(t) = =}’ Z(t)w: . (4.11)

As such, o2(t) is the volatility of the the optimal growth portfolio.

12
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Remark 4.2: Note that in terms of the optimal growth policy, we may write the optimal policy,
Ji of (3.2) in Theorem 3.1 as

*(x:b) = *__.—1__ —ftTr(s)ds ~1 fftTr(s)ds
fi(z;b) = m} ftng(s)ds be ¢(‘I> (be )) . (4.12)

Proposition 4.2 Consider an investor whose wealth, {th }, satisfies (2.4), and whose objective
is to mazximize P ( X,{, > b), Then the optimal policy for this objective, given by fi of (3.2) in
Theorem 3.1, is completely equivalent to the static policy which purchases a European digital option
on It with payoff b and strike price K**, where

oTr(s) ]
K** =Tlpexp {/OT [r(s) - -Uzzﬁ] ds — ‘//OT o2(s)ds ®~! (E%—d—) } . (4.13)

Eguivalently, under the optimal policy f;, the optimal wealth {X}} is equivalent to the (no arbitrage)
Black-Scholes price of this digital option on Ilr, i.e.,

T
X¥ =be~ Sl r(9)dsg (m (kﬂ") +Ji |r(s) - %af(s)] ds

\/ft_Ta,%(s)ds

Remark 4.2: Observe from (4.14) that terminal wealth, X7 is either 0 or b, with

) , forall t<T. (4.14)

{X3 = b} & {Iir > K**} .

Proof: We can use (4.9) to write the representation of the optimal wealth X} of (3.7) in terms

of the optimal growth portfolio, II;, (using o2(t)) as

In (%3) I [r(s) - 10%( ] )| ds + \/ s)ds &~ ( des)
\/LT o2(s)ds

When we substitute K** of (4.13) back into this, we obtain (4.14).
It remains to show that (4.14) is indeed the Black-Scholes price of a digital option on IIy. To

X = be~ Ji Tisg

see this, recall that if ¢(Il7) is the payoff on any contingent claim written on Ilz, then the (no

arbitrage) Black-Scholes price of this claim at time ¢ is given by C(¢,II;), where
Ctt ) = B[ I @y pA| | (4.15)

where E denotes the expectation taken under the risk-neutral measure P of (2.8).
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Observe now that in terms of the Brownian motion {W;} of (2.7), we may write II; of (4.9) as

I, = Mg exp { /0 t [r(s) - %0(3)'9(3)] ds + /0 t 0(3)’dW3} , (4.16)

and so if — for an arbitrary strike price K — we take y(Ilr) = b- 1{Il; > K}, then a simple
computation shows that for this case we have

T n I T ris) — l0’2 S
C(t,11,) = be~ Je T@dsg (1 (#) *J [ (Q i1 )] ds) , (4.17)
\/ftTaf(s)ds

from which it is apparent that (4.14) is indeed the (time t) Black-Scholes price of a digital option

on Il7, with payoff b and strike price K**. n
We now move on to analyze the optimal investment policy, f; of Theorem 3.1 for the general

case in explicit detail.

5 Analysis of the optimal policy in the general case

In this section we examine the investment policy f; of (3.2) for the general case in greater detail.
Note that for a fixed ¢t < T, as wealth, z, gets closer to the “goal” be~ I m($)d* e have fI — O.
Similarly, as the wealth gets closer to the barrier 0, we also have f; — 0. Thus if wealth is close to 0
with enough time remaining on the clock, the investor does not “panic” and start taking aggressive
positions in the stocks to get away from 0, but rather the investor should be patient and wait for
his wealth to grow a bit before taking active positions in the risky stocks. (It is interesting to note
that if there is enough time remaining until the deadline, the investor does not even borrow an
excessive amount when his wealth is close to 0, even though he does have the ability to borrow
an unlimited amount. See the discussion below on “the borrowing region”.) However, should the
investor get near bankruptcy, i.e., z | 0, with little time remaining, i.e., ¢ | 7', then the investor
must take a fairly active position in the stocks since then the denominator is also going to O.
Let z(z,t; T, b) be defined by
x

be™ j;T r(s)ds

whereby 0 < 2z < 1, and the interpretation of z is the percentage of the goal reached by time t.
T
-

(Note that this is not the percentage of b reached, but rather the time-dependent goal be™ J. (s)ds.)

T
2(z,t;T,b) = for =< b~ J. r(e)ds (5.1)

b

Then we may write the optimal policy as

-1 ’ -1
b | 2 T000) ch(@ (z))Jx_
it [%ft%(s)'e(s)ds :
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Introducing now the variable

vi=37(2)
alows us to rewrite this in terms of v as
-1 !
= [ (o]
Fiwib) [ ftTO(s)'O(s)ds [(I)(u)} =3

Note that v is a monotonically increasing function of z, and that as z goes from 0 to 1, v goes from
—00 to 0o. As wealth, z, gets closer to the (effective) goal, be™ ftT (945 > 1 1 and hence v T 400,
while as wealth gets closer to the bankruptcy barrier, 0, we have z | 0 and accordingly v | —oc.
Notice too that the function ¢(»)/®(v) is positive and decreasing in v.

Equation (5.2) represents the optimal investment strategy as a linear function of wealth (x)
where the linear multiple decomposes into a product of two distinct components: the first compo-
nent is the vector of purely time-dependent elements, o~ (¢)'8(t)/ ftT 6(s)'0(s)ds; and the second
is a scalar determined solely by the percentage of the (effective) goal currently achieved, ¢ (v) /®(v).
It is easy to see that for a fixed t, as wealth gets closer to the effective goal, and so z increases
as does v, this latter quantity decreases. The effect of increasing t on the former quantity is not
as clear to check since we have allowed all parameters to be time dependent. For the special case
of constant coefficients, this time-dependent vector is simply 0’1'9/ ¢'0(T —t), which is clearly

increasing as t T T'. We will examine the tradeoff between these two effects directly.

5.1 The borrowing region

It is interesting to examine the nature of risk-taking dictated by the policy described above. One
manifestation of risk-taking is in the amount of borrowing required by a policy. Here, we examine
this dimension of the behavior required by {f;} of Theorem 3.1.

Notice first that borrowing takes place only in the region I'(z,t) := {z : 1’ f;{(z;b) > z}, since

1’ f;(z;b) is the total amount of money invested in the risky stocks. This region can be characterized

¢ ) }
= T2
ro={v: §3 2907},
where the (scalar) function g is defined by ¢(¢t,T) := \/ftT 0(s)'6(s)ds/1'c~1(t)'6(t), and where
the variable v = v(z, ) is defined by v := ®~1(2).
For the case of constant coefficients, q(t, T) reduces to ¢(T —t) := £-1/(T — t) where the constant
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£ is defined by

e VI u-rl) _ ame
' 1YY p—-r1) I T L
which in the single-stock case reduces to £ = 0.
If we set /7 := q(T —t) = &/T —t, then we can consider T to be the risk adjusted time to
play, since it is in fact just the time to play (T —t) multiplied by a risk factor (¢2). The borrowing

region is then equivalent to
Ly, 7):={v:o(w)/®(v) > V/T}.

To analyze the boundary of this region, let »*(7) denote the root to the equation ¢(v)/®(v) — /7 =

0, i.e., v*(7) is the unique number such that
)/ B(v*) = VT.

(Since the LHS is decreasing in v while the RHS is increasing in 7, it is clear that there is a unique
root.) Furthermore, it is easy to establish that these roots are decreasing in the remaining time, 7,
ie., v*(r) > v*(T +6), for all 6 > 0.

The borrowing region is thus as follows: borrowing occurs when v(7) < v*(7), but not if
v(1) > v*(r). Equivalently, since ®(-) is an increasing invertible function, we see that borrowing
occurs only when ®(v(7)) < ®(v*(7)), i.e., when 2(7) < z*(7), where z(7) has the interpretation
of being the proportion of the goal obtained with T (risk-adjusted) time units left to go. A graph of
2*(7) (calculated and drawn in MAPLE V) is given below in Figure 1.

% of Goal Obtained

No Borrowing
Region

L 0.2

1
.0,

B A eSS
/

Time Remaining
Borrowing Region

Figure 1. z*(7) plotted against 7.

Some select values of 7,v*(7) and 2*(7) are given in Table 1. As Table 1 shows, if there is .05

time units left until the deadline, the investor must borrow under policy f* unless the investor’s
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T v*(1) 2*(1) T v*(r) 2*(T)
001 | 2.256996187 | .9879958435
05 | 1.186694106 | .8823258496 .55 | .08978236088 | .5357699172
10 | .9249416566 | .8225018716 .60 | .03681409382 | .5146833818
15 | .7547039235 | 7747866741 .65 | -.01307315143 | .4947847157
20 | 6247149806 | .7339209304 .70 | -.06029250311 | .4759613364
25 | .5179127160 | .6977404152 75 | -.1051762297 | .4581179860
30 | 4263687842 | .6650804281 .80 | -.1479958531 | .4411730205
35 | 3457091853 | .6352193598 .85 | -.1889763275 | .4250556853
40 | .2732480356 | .6076687214 .90 | -.2283062760 | .4097040730
45| 2072097020 | .5820769547 .95 | -.2661455387 | .3950635622
50 | .1463549786 | .5581794168 | 1.00 | -.3026308407 | .3810856042
1.5 | -.6129889502 | .2699418230 3.5 | -1.419901384 | .0778181965
2.0 | -.8600276797 | .1948868923 || 4.0 | -1.571857688 | .0579917796
2.5 | -1.069577667 | .1424047261 4.5 | -1.712651966 | .0433882934
3.0 | -1.253906116 | .1049380659 5.0 | -1.844316203 | .0325685358

Table 1: Borrowing Region: T=(risk—adjusted) time to go, 2* (T)z% of distance to goal by 7. v* (7-)
is the root to the equation ¢(v)/®(v) — 71/2 = 0.

wealth is already 88.23% of the distance to the goal. As the time to go increases, the investor needs
to borrow only at lower percentages. For example, if there is 7 = 1 unit of time left to go, then the
investor will borrow only if his wealth at that time is less than 38.1% of the way there.

It is important to note that increasing the risk factor, £2, has the same effect as increasing the
actual time left to play, T —t. Therefore, for a higher risk factor, one would borrow less, in the

hopes of reaching the goal later.

Remark 5.1: Asymptotics, near the barriers. When wealth, z, is close to the barriers, 0 or
be~ I m()4s then z is correspondingly near 0 or 1, and v is correspondingly near —oo or
+oo. It is interesting to examine what happens to the state-dependent factor, ¢(v)/®(v),
near these boundaries. Note that since ¢ is symmetric, the behavior of ¢(v)/®(v) as v | —oco
is equivalent to the behavior of ¢(v)/ (1 — ®(v)) as v T +oo.

Therefore the following two asymptotic results are immediate:

im 20 g 2
z—1 &(v) vi+oo @(v)
lim W) g W) g ) _ o

20 B(0) N30y = A0 Te0) =
As expected, we see that as wealth approaches the goal, the state dependent factor goes to O,
but as wealth approaches O, the state dependent factor increases without bound even though,
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as we observed previoudly, total investment in the risky stocks actually decreasesto O in this
case.

5.2 Comparison with Utility Maximizing Policies

It is interesting to compare this behavior with that of an investor whose objective is to maximize

terminal utility from wealth. For example, consider the case where the investor wants to maximize
E [u(X,_}:)], where

u(z) = 6—1:61_%’ forz > 0,6 >0.

(Note that this includes logarithmic utility, when = 1.) This power utility function has constant
relative risk aversion 1. The optimal policy for this case, call it { ,f‘ts, 0 <t<T1Y, is the vector (cf.
Merton [20], Karatzas [14])

fil@)=6-27(t) (u(t) ~ r()1) -z = bm} -z,

wher 7} is the optimal growth policy discussed earlier. The utility maximizing investor invests more
heavily in the risky stocks, relative to the probability-maximizing investor, when fS(z) > f(z;b),

and vica versa. It is easily seen that this occurs for values (z,t) for which

T
g((,’j)) < 5\/ /t 0(s)'0(s)ds

and vica versa. Thus the dynamics of this comparison reduce essentially to that described above

by the borrowing region, modified by the risk aversion parameter 6.

6 Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. We will first show that the function V
satisfies the appropriate Hamilton-Jacobi-Bellman (HJB) equations of stochastic control theory
and then employ a martingale argument to verify optimality. This will prove the Theorem as well
as Corollary 3.2. We then show how we obtained the candidate value function by extending the
elegant argument of Heath [11] to our case.

6.1 Verification of Optimality

Standard arguments in control theory (see e.g., Fleming and Rishel [8, Example 2, p. 161]) shows
that the appropriate Hamilton-Jacobi-Bellman (HJB) optimality equation for Vis

SL}p {4V} =0 (6.1)
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subject to the boundary conditions

T
1 for z > be Je r(e)ds ¢ < T ’
V(t,z;0) = { o for z=0,t<T (6.2)

I{b} for t="T.

The generator of (2.5) shows that the HJB optimality equation (6.1) is

sup {Vi + (F1(40) = r(O1) + 1O0)Ve + 3£ DO Ve f =0, (63

Assuming that a classical solution to (6.3), say V, exists and satisfies V; > 0, V;, < 0 for

T r(s)ds

T < be” J; , we may then optimize with respect to f, in (6.3) to obtain the maximizer
y t

H(236) = =71 (B) ((t) - r(t)l)-% = —a*(t)'o(t)%. (6.4)

When (6.4) is then placed back into (6.3) and the resulting equation simplified, we find that (6.3)

is equivalent to the nonlinear partial differential equation

2 T
Vi +r(t)zVs — %O(t)'a(t)“/f—x =0, for t<T, and z < be Jo T(5)ds (6.5)
xxr

subject to the (discontinuous) boundary condition (6.2).

Recalling now the basic facts about the normal pdf and cdf:

@y _ . 4@ 1 dey) _

it can be verified that for the function V(t,x;b) of (3.1), we have

V, = ¢ (qu (%eff"@)‘ﬂ + \/ /t " 0(s)8(s) ds ) %eff r(s)ds [¢ (qu (%eff ’"<S>ds>>]_(é.7)
Ve = Vi [\/ /t " 0(s)0(s)ds %eff'@)ds [¢ (qu (%efﬂs)“))]_l} (6.8)
T A s I

When these derivatives are placed back into (6.5), it is seen that in fact V solves (6.5), and so
the optimal control f;(z) of (3.2) is obtained by placing (6.7) and (6.8) into (6.4).

Moreover, it is also seen that the first two boundary conditions in (6.2) are satisfied for V of
(3.1). This follows from the fact that ® is a cdf, and hence ®~!(u) = —oo for v < 0, @71 (u) = oo
for v > 1. The third boundary condition of (6.2) causes a discontinuity. This problem (for
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"probability maximizing objectives") is discussed in Fleming and Rishel [8, Example 2, Page 161];
where it is shown that such a discontinuity y is acceptable, provided that the optimal wealth process,
{X},t <T} (i.e., the wealth under the control f}), satisfies the condition P(0 < X* < b) = 0.
(That is, the optimal terminal wealth must be equal to one of the two barriers, 0 or b. ) We will
show directly and rigorously that this condition is in fact met here, although it is easy to see that
the only way we could have [T f¥'fidt < oo is if in fact X% =0 or X% = b.

To see this more clearly, let H; := 2(X},t;T,b), where the function 2 was defined earlier in
(5.1), and where X} denotes the optimal wealth process; i.e., Hy = X}/ {be™ I r(’)dSJ, and X} is
determined by the stochastic differential equation in (3.6). An application of Ito’s formula to (3.6)
then shows that

6(t)'6(t) -1 1 -1 )
dH; = O (Hy))dt+ o' (H;))0(t)dW,. 6.10
: \/ffa(sye@)df( (Hy)) \/ftTO(s)’O(s)ds¢( (Hy)) 6(2) (6.10)
Another application of 1to’s formula will verify that the solution to (6.10) is
- ( J38(s)'dW 5 + [3 8(s)'6(s)ds + v/ J7 8(s)'6(s)ds 4>—1<Ho>) 6.11)
\/ftT 6(s)'0(s)ds ’

from which the representation of X} given in (3.7) is immediate, proving Corollary 3.2.

Inspection of (6.11) shows that H.is either O or 1, and that moreover,

T T T
P ( /0 0(s)dW, > — /0 0(s)'6(s)ds — \/ /0 0(3)’0(s)ds¢’1(H0)>

® (qu(H )+ \//Te( Y6 )
0 $)'0(s)ds | .
0

Substituting now for X7 shows that

P(Hr =1)

P(X3 = b) = V(0, Xo35) = 1 - P(X3 = 0)

which isthe desired conclusion.

Note further that (6.10) can be rewritten using W as
¢ (7! (Hy))
VST 6(s)6(s)ds
which shows that H; is a P martingale (recall that 0 < H; < 1). As such, the martingale represen-
tation theorem (e.g., [16, Theorem 3.4.2)) provides the representation H; = Hp + fg &AW, with &

- ¢ -1 -
dH, = 0(t)dW, = [be‘ Ix f<s>d8] £l (t)dW, (6.12)

a measurable, adapted process that is square-integrable, i.e., fOT £.¢.ds < oo a.s. We may therefore

conclude immediately that fOT Y fidt < oo [
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6.2 Obtaining the candidate value function

While we have aready shown that V does indeed solve the HIB equation, we have not actually
solved the resulting nonlinear partial differential equation (6.5) directly for V. Rather, we obtained
a candidate solution to (6.5) by reducing the problem to a form whose optimal value function we
were able to guess by extending an argument of Heath [11], as we now show.

t
To proceed, set Y,/ = e~ Jo r(8)ds xf and then apply Ito’s formula to get

. n n i ,
v =& Jo % | fu(e) —re)1)dt + 3.3 fDoy()awd (6.13)
i=1j=1

1
Setting now g, = f,e” b r(8)ds et us first consider the following problem: .Find U(ty;c) :=
supg Fz.y) (Y£ > c) and its associated optimal control vector, {g},t < T}, where

n n i X
4Y? = g(u(t) —r()D)dt + 33 gloyi(t)aw,?. (6.14)
i=1j=1
This is now essentially (aside from scaling factors) the multivariate generalization of the problem
studied in Kulldorff [19] and Heath [11]. Following Heath [11], we note that we can rewrite (6.14)
in terms of the P Brownian motion W; = W, + fg O(t)dt, as

dyf = znj f: 9 () dW . (6.15)

i=1j=1
It is clear, by the admissibility assumption on f, — and hence on g, — that the local martingale
Y{ is in fact a martingale under the measure P. Hence, letting A9 := {w : Y > c}, it is clear by
the martingale inequality that we have P(A9) < Yj/c, and since the RHS of this is independent of
the policy g, we may conclude that sup{g : P(A9)} < Yp/c. If we assume this upper bound can
be hit, then a straightforward generalization of an argument in Heath [11], reproduced here for the

sake of completeness in the Appendix, then shows that

Ut,y;c) = @ (cp—l (%) + \/ /t ’ 0(3)’0(s)ds) . (6.16)

A HJB argument then shows that gf = —~ X1 (¢)(u(t) — r(t)l)%”;, and by differentiating (6.16)
appropriately we obtain

o [0 0] e (v |
il [ VIT 6(s6(s)ds ] o(+7 (1)) (617
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All we need do now is recognize that
T
sup Py (XF 2 ) = 00 Py (f 2 =60 (6.18)

with
y=ze ~Jyrerd ®, and ff= elo r(e)dsgr

And indeed taking y = e~ Jor®4dsg and ¢ = belo Ts ip (6.16) and (6.17) gives
V(t, T; b) =U (t, re~ f; r(S)ds; be™ foTr(S)ds)

where U(t, o; @) is the function given by (6.16), and

ft* (z;b) = efot r(s)dsg: (ze™ fot r(a)ds; be™ fOT r(s)dS) ,

/-\
p-l
\_/

Of course, this argument still needs a rigorous verification, which is the content of the previous

proof. The functions U and g} in (6.16) and (6.17) are central to the remainder of the paper.

7 Exogenous Income

In this section we analyze the case where the investor has an exogenous (deterministic) income
stream. Specifically, suppose that income is earned at rate {I{(¢),0 <t < T}, where I(s) > 0 for all

s. The investor’ s wealth then evolves according to

ix! = Z <z)d5z((tt) ( Z (z))i{’izwt)dt

[rXt + E F (i) — () + l(t)] dt + Z Xn: Do t)aw . (7.1)

i=1 i=1j=1

This case can be treated by modifying our previous analysis, as we now show. To that end,

define first the function x(z,t) and the constant A by
t t s
k(z,t) = e~ Jorwdug, _ / e Jo '(")d"l(s)ds. (7.2
0

A

T s
beJo Twidu _ /0 e~ Jo "Wy gy gs (7.3

The optimal value function and optimal policy for maximizing the probability that the investor
achieves the wealth level b by the terminal time T are given in the following theorem.
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Theorem 7.1 For an investor whose wealth process follows (7.1),

st T
U (t,z;b,T) := SI}p Py (Xf20) =2 (qu (%—)) + \/ /t 0(3)’0(s)ds) (7.4)

and the associated optimal investment policy is

Doy o S f _ E—I(t)(ﬂ(t)'—r(t)l) Otru u - Ii(:l:,t)
Jelemb) = oresip Mo (XTZb)_[ JIT 65y 0(s)ds } [elrea] o (o (<52))

(7.5)

Remark 7.1: An analysis similar to that done after Theorem 3.1 shows that under this policy,
the investor stops investing in the risky stocks altogether, i.e., fgl)(:c; b) = 0, when k(z,t) > A
as well as when x(z,t) < 0. The former case is in effect for wealth levels, x, that satisfy

T T 8
z > b~ Jo rwan _ / eJe Ty g (7.6)
t

while the latter case occurs for wealth levels that satisfy

t st
T S/ els rwduy(g)ds . (7.7)
0

The economic interpretation of (7.6) is clear since we may rewrite it as
T
zeli T(wau +/ eLTr(u)dul(s)ds > b
t

which shows directly that by investing current wealth ( x) and all future income in the riskless
asset, the goal b can be reached with certainty at time T.

The interpretation of (7.7) is perhaps more interesting, since the RHS of (7.7) is the level
of wealth that would have been achieved at time t by simply investing all the income until
that time directly into the risk-free asset. Thus if wealth ever falls to that level, the investor
following policy _fgl) would stop investing in the risky stocks and just put all wealth into
the risk-free asset. Therefore, as opposed to the case without income treated earlier, wealth
is effectively bounded away from 0, and so the investor with positive income can never go
bankrupt under policy fgl). Moreover, this lower bound on wealth acts as a sort of “per-
formance bound” on the investor: if the performance of the risky stocks is such that wealth
drops to the value of the income stream invested in the risk-free asset, investment in the risky

stocks stop.

This behavior differs significantly from the behavior of a utility maximizer with an income

stream. For example, in the constant coefficient case with I(s) = [, it can be shown that
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the optimal policy for an investor who wishes to maximize expected logarithmic utility of
terminal wealth at time 2’, isto invest

7 (u—r1) (:c + é (1- e—’<T—t>)>

in the risky stocks (cf. Merton [20]). Thus a utility maximizer essentially capitalizes future
earnings (till T') at the risk-free rate and then invests as if his current fortune already included
this amount. Therefore, even if wealth goes negative, so long as = > —% (1 - e“’(T‘t)), the
investor still invests a positive amount in the risky stocks. Not so for the probability maximizer
who behaves in the manner described above. In essence, a utility maximizer uses income to
take extra risks, by borrowing against future earnings, while our Theorem 7.1 shows that a

probability maximizer relies on income to become more cautious.

t
Proof: Let g, :=e" Jor(e)ds ft, and for the remainder of this section only, let Y be defined
now by

t s
YP = e Jorwiduyf _ / e~ Jo Ty g (7.8)
0
where th is as in (7.1). Then a simple application of Ito’s formula shows that
n o n ) ) n n . o
dYf = gi(u(®) - r@Ddt + 33" 900w = 3 3 ooy ()WY (7.9)
i=1 j=1 i=1 j=1

which is the same as (6.13) and (6.14). Thus we observe immediately that if
Ut,y;¢) =supP (YL 2 c|Yr=y),
g
with optimizer gf, then U(%,y; c) and g} are given by (6.16) and (6.17). Now, by (7.8), we see that

T T ,r
supP(YZ > clY;=y) =supP (X:,fa > cedo m()du +/ els rWduy(5)ds | Y, = n(:c,t)) (7.10)
g bi 0

where k(z,t) is given by (7.2). Thus we may invert this to deduce that in terms of a goal problem

for th given by (7.1), with arbitrary b, we have

supP(X% >b|Xi=1z) =U(tk(z,t); A),
f

as well as

O (a1b) = eo g7 (x(z,1); A)
where the function U(t, e; e) is defined by (6.16), g;(e; e) is defined by (6.17), x(z,t) by (7.2) and
A by (7.3). Direct substitution then shows that U (¢, (z,t); A) = ¥(¢,z;b, T) of (7.4) and that the
policy given in (7.5) is indeed optimal for the problem of maximizing the probability of attaining
thegoal b by time T. m
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8 Liabilities

Consider now an investor who faces a deterministic liability stream {L(t),0 < t < T}, whereby
an amount, L(s) > 0, must be paid out at time s. This model is applicable to scenarios such as

pension fund management. The reserves of the pension fund evolve according to

dth = Z (1) d?z(t ( thz> dB, -—L(t) dt

[rxt + 3 10t - r(0) - L(t)} #+ 35 Poyaw?.  (s1)

i=1 t=1 j=1

A variety of investment problems related to the achievement of goals for this model in an infinite
horizon setting was studied in Browne [4] for the constant coefficients case.

It is tempting to merely mimic our previous analysis for this case, however, we would then get
a policy under which wealth can become negative. To see this, let g, == e~ ft; r(s)ds [+, and for the

remainder of this section only, let Y7 be defined now by
t 3
e = e Jor@inxt o [Mem Jordu g4 (8.2)
JO .
where th is as in (8.1). Then once again it is clear that

. n n . -~ .
a9 = gi(u(t) - r(®Odt + 3 z 3oty aw? =33 ooy (t)dw? (83)
i=1 j=1 i=1j=1

which again is the same as (6.13) and (6.14). Thus we observe immediately that if
U(t,y;c) =sup P (Y 2 oYy =),
g
with optimizer g7, then U(¢,y;c) and g} are given by (6.16) and (6.17). Now, by (8.2), we see that

T T T
supP (Y > clY; =y) =sup P (X% > cedo T _ / els rWdu L (5)ds |Y; = 6(w,t)) (8.4)
g b 0

where now

t t s
Blz,t) :=e" Jo rwduy +/0 e Jo rWdLp (g)ds. (8.5

We may again invert this to deduce that in terms of a goal problem for X/ - now determined by
(8.1) - with arbitrary b,

up P (Xt 201X =2) =U @6 m) , (8.6)
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where the function U(t, e; e) is given by (6.16), 8(z,t) is defined above and
n = be~ o Twdu 4 /OT e~ Jo TR () ds (8.7)
We may therefore deduce directly that the policy given by by
B(z;b) = elo g2 (8(z,1); )

is indeed optimal for the problem of maximizing the probability of attaining the goal b by time T.
However, there is a new problem for this model which was not in effect in the cases treated earlier,
namely, under policy f(L), it is possible for wealth to become negative. In fact, under £, the

investor will still invest so long as 3(x,t) > 0, which in terms of wealth means as long as

t
z>— / efs MWL () g 89)
0

This of course causes no problems in terms of the general control problem that we consider, since
it simply means that under policy fﬁL), the investor, or pension fund manager, needs to borrow
from the bank whenever wealth is negative so long as (8.8) is met. However, suppose there is also
a hard nonnegativity constraint on wealth, what should the pension fund manager do ? While we
don’t have a complete answer to this problem yet, we can address the problem of how the pension
fund manager should invest subject to the regulatory constraint that current reserves, X,f , always
be greater than the current discounted value of future liabilities, i.e.,

x> / Tl rwdu (g)ds. (89)

t
We give the answer in the following theorem. To ease notation somewhat, |et

- T s -
i) = / e~ ST (s and let B(t) := be™ St T (8.10)
t

Theorem 8.1 Consider an investor whose wealth, th , 18 given by (8.1), and whose objective is to
mazimize P(XF{: > b), subject to the regulatory constraint in (8.9), i.e., X,f > L(t) forallt <T.
Then, provided that initial wealth, Xy, s such that Xo > L(0), the optimal value function &

given by
G(t,z;b) := s1}pP(t,z) (X:’; > b, tsif}éTX’{ > ﬁ(u)>= ¢ (@-1 (zg_(f’)(tl> " \//tT 0(s)'8(s)ds
(8.11)
and the associated optimal investment policy is given by
; T8 - r@®D) | ; ( 4 (m—i(t)>>
t(z;b) = bit)yp| ™ | ———— ] | » 8.12
fi(z;b) [ /I 6oyo0)ds J (t) 50 (812

where the functions L(t) and b(t) are defined in (8.10).
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Remark 8.2: Observe the ‘portfolio insurance' type of behavior that isimplicit in (8.12), in that
it is only the surplus of wealth over the ‘floor’, z — L(t), rather than wealth itself that plays
arolein the policy.

Proof: Recognize first that (8.2) shows that the requirement that th > L(t), forall0 <t <Tis
equivalent to the requirement that Y be greater than the constant i(O), for all 0 <t < T, where
Y/ is defined by (8.2), and L(0) = T e~ Jo r(Wdu L, (s)ds. For arbitrary ¢ with L0)<y<ec, let

Ut,y;c) == Sup Pty (qu >c, tgi?éTYsg > E(O)) ,
with optimal control function
9;(y;c) = arg sup Py (Yj‘! 2e, SigéTY;’ > E(O)) :
The change of variables Y2 := Y;? — L(0) shows that
Ut,y;0) =U (ty - L(0)ic— L(0)) , and §i(yic) = g7 (v — L(0);c — £(0)) (8.13)

where U (t, y; c) and g} (y; c) where defined earlier by (6.16) and (6.17).

Observe now that
f . = _ . =
81}p P ) (XT 25, éﬂérx‘{ > L(t)) = sup Pty) (Y»ﬁ 2, Jof Y72 L(O))

with y = B(z,t), where 3(z,t) is given by (8.5), and 7 is given by (8.7). As such, (8.13) shows that
we must have

G(t,z:b) = U (t8(z,1) - L(0)in — L(0)) (8.14)
Fulzb) = elorigr (p(a,1) — L(0); n - L(0)) (8.15)

where U(t,y;c) and g;(y;c) are defined by (6.16) and (6.17). Direct substitution of §(z,t) from
(8.5), n from (8.7) and L(0) from (8.10) into these functions give (8.11) and (8.12). ]

9 Beating another Portfolio

In this section we apply our earlier results to derive optimal portfolio strategies for an investor,
such as a fund manager, who is interested solely in beating a given stochastic benchmark. The
benchmark is most typically an index, such as the S&P 500. In particular, it is just one specific
portfolio strategy. First we show that the problem of beating the actual value of the benchmark
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by a constant absolute amount is just a simple application of our earlier results — but only for
the trivial case in which wealth is already greater than the benchmark. Next we consider the
more interesting problem of beating the benchmark portfolio by a given percentage, which is the
focal point of active portfolio management. We then find the related policy which corrects for the
downside risk. When the benchmark portfolio strategy is the optimal growth policy, then the ratio
of the wealth from any arbitrary portfolio strategy to the benchmark isin fact a supermartingale,

and as such problems arise. Nevertheless, we are able to find a strategy which does achieve the
maximal possible probability of beating the optimal growth policy by a prespecified percentage by
a fixed deadline.

9.1 Beating the benchmark by an absolute amount

Suppose now that the investor’s wealth, {th 1 < T}, evolves as in (2.3), and let Q; denote the
value of the benchmark at time ¢t. Then, for some given strategy, m;, we assume that Q; evolves

according to

(&) dSi(t " @) dB
dQ: = Zﬂt( )—————Si(i)) + <Qt—21r§)> ?tt

i=1 i=1

n . n n B X
= {er + 3w (ualt) - r(t))] dt+3 > oy (t)aw? (9.1)
i=1 i=1j=1
upon substituting from (2.1) and (2.2). Let w; = (7r§1), e ,1r§"))'.

If the investor’s objective is then to choose a strategy f to mazimize the probability that the

benchmark is beaten at time T, say by the amount &, i.e.,
P(x{i>Q | X¢ = =gq)=supP (XL - X, = =
SI}P T T+h|Xe=2z,Q:=¢q —Sl}_P r—Qr>k|Xt=1x,Q=q),

then, since

d(x{ - @)= [r (x{-Q) + znj (F2 =7 (w®) - r(t))] dt + zn: an (2 = =) o3ty aw ¥
i=1

=1 j=1

it is immediate from Theorem 3.1 that, for 0 < Xy — Qg < k, the optimal policy is
fi(@,q) =m + fi(z - ¢;K)

where f; is the policy of (3.2). However, this is applicable only for z > ¢, i.e., when the portfolio
is already greater than the benchmark.
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9.2 Beating the benchmark portfolio by a given percentage

More interesting is the objective of ensuring that X/ exceeds the benchmark Q by a preset percent-
age. To that end, we will find it more convenient to use a geometric, or proportional parameterization
of the model, i.e., instead of parameterizing the problem by taking f, to be the vector of absolute
amounts invested in the stocks, we instead — for the remainder of this section — let ft(i) denote the
proportion of wealth invested in stock ¢ at time ¢, with f, := ( ft(l), e ftn))l now denoting the
corresponding column vector of proportions. Then under this parameterization, it is clear that the

wealth process evolves as (compare with (2.3))

ththz S(t))+Xt ( th’) 2

_ [ +}:f(’) t)(uz(t)—r(t))J dt+ XIS 0o maw?,  (92)

dx/

i=1j=1
upon substituting from (2.1) and (2.2).
Similarly let Q; now be defined by
n n
dQ. = { ~ Z ) (pa(t) <t>)} dt+Qey Y m oy (AW, (9.3)
i=1j=1
where m; = (wﬁl), cees wﬁ"))' is the (column) vector of portfolio weights in the benchmark process.

An interesting objective is then to choose a policy that mazimizes the probability that for a fired

T, X% ezceeds Q; by a predetermined percentage. Denote the resulting optimal policy by f7, i.e.,
{ff}= arg51}pP (X{: > (14 A)- QT) .
Let th (m) = th /Qt, with z{ = X, /Qo. A simple application of Ito’s formula then gives

dz{ = z{(f, - =)' (u(t)—r(t)l—E(t)m)dt+ZfZZ(ft’ ~ 1oy W . (9.4)
=1 j=1

In the next theorem, we provide the optimal policy and the optimal value function. It depends

solely on the current value of the ratio of the two portfolios, Z;, as it is obvious that

sup P (X4 > (1+0Qr X! = 2,Q. = ) ssx}pP(Z% >1+A12{ = 2).
f

Theorem 9.1 Let Z{ = X[/Q; be defined by (9.4). Then

F(t,z\T) = s1}pP (24 >1+ 2 = 2) =9 (@—1 (1 i /\) + /tT 7(3)45) (9.5)
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and the optimal (proportional) control f7, defined as f7 := arg {supf P (Z% >14+ M2 = z)}, is

onnine [ ()l (5) e

where the function v(-;-) is defined by

Y(t; 7o) 2= () — ) Z(t) (w7 — ) (9.7)
where w} = X71(t) (u(t) — r(2)1).
Proof : Let g, = f, — 7, with components g}t(i) = ft(i) - 7r§i), and let fi(t) be defined by
at) = p(t) — 2(t)m, . (9-8)

Then it is clear that we have

azf = zf (gt (itt) ~ r(O) dt + 323 gl <t>dW§”)
i=1 j=1
which, with fi(¢) replacing u(t), is equivalent to the “proportional control” parameterization of Y¢
of (6.14) considered previously, with g, = Z/g,. As such its value function is U(t,z: 1+ 1 ) of
(6.16), with fu(t) replacing pu(t), which is equivalent to (9.5). Similarly, the optimal control is then
given by g; = g{(z;1 + X)/z, where g;(-;-) is given by (6.17), with fi(¢) replacing u(t). Recalling
now that f7 = m; 4+ g;, and substituting back for fi(t) gives the control in (9.6). [ ]

9.3 Controlling for Downside Risk

The previous development gives a policy under which the maximal probability of beating the
benchmark by A% is F(0,20; A\, T) = & (<I>—1 (ﬁQX) + \/fOT ~(s; ws)ds). However, as noted earlier,
the nature of this policy is such that we also have the downside risk that the ratio at the terminal
time might end up at 0, with P (Z} = 0) =1 — F(0, 20; A\, T'), and so bankruptcy is possible. This
probably entails too much risk-taking for most applications. Instead, consider then the following

hnn sl Lo
at tne prescribea be

nchmark by A%, with the
additional proviso that the portfolio never underperform the benchmark by another given percentage,
say 6%. Formally, the portfolio manager’s objective then is to determine the optimal policy f?¢

that solves

f ; f -
Sl}pp (ZT >1+ /\,Osus}éTZs >1 6) . (9.9)
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Denote this optimal value function by F(t, z; A, 6,T). The change of variable Z~tf = th — (1 — &),
then shows that

P4 e = f ; f -
F(t,z; A,6,T) = 51}pP (ZT >14 ), tslglsz Z; 21-46|Z z)
= ~f H 7 f 7 — —_ —_
= Sl}pP<ZT>A+6’t§1£éTZs >01Z;=2-(1 6)) .

But this last term is precisely the problem considered earlier in Theorem 9.1., where the nonnega-
tivity condition was implicit. As such, we know that F'(t, ;A\, 8,T) = F(t,z — (1 —=6); A+ 6 —1,T),
where F(t,e;e;T) was defined in (9.5). Explicitly, we have

ﬁ’(t,z;)\,é, T)=9% ((I)‘l (z;/\(—_l*_;_é)) + ftT 7(3;7rs)ds) ) (9.10)

Similarly, the optimal policy for this problem istherefore given by

iz 6, m) =m + [\/ft:i(;":s)ds'l (z _’\(;’f 5)) o <q>-1 (%_gﬁ)) , (9.11)

It is interesting to note that this policy invests more (for a fixed z) in the risky stocks than does
FT of (9.6). This follows from the fact that ¢ (®~'(u)) /u is decreasing in u, and for z <1+ A, we
have (z — (1 = 8)) /(A+6) < z/(1 + A), for all 6.

9.4 Can we beat the Optimal Growth Policy ?

Suppose now that =, is the optimal growth policy, ®; given by

m; = E70) () - r(0)1) = (0(2))70(0). (9.12)

As noted earleir, this policy maximizes the “growth rate from investment”, see e.g., Karatzas [14,
Section 9.6], and is also sometimes referred to as the market portfolio (from CAPM considerations).

When we place 7} back into the evolutionary stochastic differential equation for Z f, and simplify,
we find that {Zf(n*)} satisfies

dz{ = z{ (f, - =) o(t)dW, (9.13)

implying that Z,g’e is a nonnegative local martingale and hence a supermartingale for every admissible

policy f;. In fact, since Z7 is bounded above by 1 + ) in our application, it is indeed a martingale
(although in general we would need to restrict our attention to policies that satisfy the Novikov
condition (i.e., E (exn{(l/m l",\ f'f den < o0, for all t) to ensure that Z is a martingale).

TTOAT \_ EEARYAV IR 4 5" -
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Since Z/ is a martingale we have E (ng Ifs) = Z{ for all policies f,. Thus, since Z/ is now a
“fair game”, it is not clear if we can find an optimal strategy to beat it in finite-time. (The results
of Heath and Kulldorff apply only to favorable games, i.e., where the underlying drift is positive.
The finite-time control of subfair games is treated somewhat in Sudderth and Weerasinge [26], but
their results are specific to a class of strictly subfair games, and are not applicable to our “fair”
game.)

Note that for 7; = 7}, we have y(¢; w;) = 0, for all ¢, and the value function of (9.5) evaluated
at v = 0 gives F(t,2;A,T) = 1%y, which is of course consistent with the martingale inequality
P(ZL > 1+ A2 = z) < 2/(1+ X), which holds for all admissible policies f. Since the RHS of this
inequality is independent dhe*policy, we can extend it to

s1}pP(Z{1 > 1+/\|th=2) < 1—_%
However, the value function F of (9.5) — treated as a function of g— is not continuous at g= 0.
Moreover, the policy, f7 of (9.6) is indeterminate when m; = m}, since we also have ~(t; 7)) = 0.
However, it turns out that this policy does have a limit as 7y — 7}.

To see this, take w; = (1 — €)7} in (9.6). When we do this we find that it reduces to

ronti= == [l | () (75)

This control is a continuous function of ¢, and so we may evaluate it at € = 0 to obtain
*

\/f?e(:;’O(s)ds (lJz“\)d’(q)_l (1i,\)) : (9.14)

The control function ff(z, A, w}) in fact does achieve the optimal possible value, z/(1 + A). We

Fi(z A ) =n + [

formalize this in the following.
Theorem 9.2 Suppose that the benchmark is the optimal growth policy given by = of (9.12). Then
the optimal value function is

z
1+

Sl}p Puo (24 >1+42) = (9.15)

and this optimal value can be achieved by the policy f7(z, A\, 7}) in (9.14).

Remark 9.1: Note that the linear form of the value function in (9.15) precludes us from using
any HIJB methods.
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Proof: As noted above, since {th 1 < T} is a martingale, the martingale inequality provides the
upper bound z/(1+ A). Thus the equality in (9.15) will follow if we can find a policy that achieves

this upper bound. To see that f{ (2, A, 7}) is such a policy, replace f, in the stochastic differential

equation (9.13) with f7 of (9.14), and denote the resulting process by Z;, and let H; := Z}/(1+)),
to find
—m}o(t _ -1 -
dH} = ———=t ® 4 (e (H;)) AW =~ (27 (7)) 6(t)dW,  (9.16)
VST 6(s)6(s)ds VST 6(s)6(s)ds

for t < T, where the last equality follows from the fact that ¥ = o~ 1(t)'6(1).
The solution to this stochastic differential equation is

t ! T ’ -
- (fo 0(s)'dW , + \/JT 0(s)'8(s)ds ® I(Ho)) o 0<t<T 0.17)
VT 6(s)8(s)ds

as can be verified by an application of Ito’s formula. Direct examination of (9.17) shows that H*

isequal to 1 or O, with

T T
PH:=1)=P ( /0 0(s)dW, > —\/ /O 0(s)8(s)ds <I>‘1(H0)> = H,

where the last equality follows from the fact that f(;‘r 6(s))dWy, ~ N (O, fOT 6(s) 0(5)ds> under P.
The statement of the theorem now follows since H; = Z; /(1 + ). [
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A Appendix
A.1 The Argument in Heath [11]

The modification of Heath’s argument in [11] to the case treated in Section 6.2 is as follows: For Y’
defined by (6.14) and (6.15), let A := {w: Y{ > ¢}, and so P(A4) < Yp/c. But P(A) < sup{P(B):
P(B) < Yo/c}, and the “sup” can be evaluated via the Neyman-Pearson Lemma. Hence there
exists a unique number X such that P {g—g > )\} = Yp/c. But this probability is, by (2.8), simply

P (exp {/OT 0(s)dW, — %/OT 0(3)’0(s)ds} > A) =Yy/c,

and since under P, fOT 0(s)'dW, ~ N(0, f(;‘r 6(s)'0(s)ds), we find

In()) = —\/ /O " 0(s)0(s)dsd (Yo c) — -;- /0 " 0(s)0(s)ds

and hence the corresponding P probability is

P ( /0 " o(s)dW s + % /0 " o(s)0(s)ds > -\/ /O " 0(s)0(s)ds®1 (Yo /c) — % /0 ’ 0(8)'0(3)(13)

which, by virtue of the fact that f(;‘r 6(s)dW s ~ N(0, f(;-” 6(s)'08(s)ds), is simply U (0, Yo; ¢) of (6.16).
Dynamic programming then applies for arbitrary (t,y) to give U(t, y;c) of (6.16).
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