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Abstract

We study a variety of optimal investment problems for objectives related to attaining goals
by a fixed terminal time. We start by finding the policy that maximizes the probability of
reaching a given wealth level by a given fixed terminal time, for the case where an investor can
allocate his wealth at any time between n + 1 investment opportunities: n risky stocks, as well
as a risk-free asset that has a positive return. This generalizes results recently obtained by
Kulldorff and Heath for the case of a single investment opportunity. We then use this to solve
related problems for the following cases: (i) when the investor has an external source of income;
(ii) when the investor faces external liabilities, as arises in pension fund management; and (iii)
when the investor is interested solely in beating the return of a given stochastic benchmark, as
is sometimes the case in institutional money management. One of the benchmarks we consider
for this last problem is that of the return of the optimal growth policy, for which the resulting
controlled process is a supermartingale. Nevertheless, we still find an optimal strategy. For the
general case, we provide a thorough analysis of the optimal strategy, and obtain new insights
into the behavior of the optimal policy. For one special case, namely that of a single stock with
constant coefficients, the optimal policy is independent of the underlying drift. We explain this
by exhibiting a remarkable correspondence between the probability maximizing results and the
pricing and hedging of a particular derivative security, known as a digital or binary option. In
fact, we show that for this case, the optimal policy to maximize the probability of reaching a given
value of wealth by a predetermined time is equivalent to simply buying a European digital option
with a particular strike price and payoff. A similar result holds for the general case, but with
the stock replaced by a particular (index) portfolio, namely the optimal growth or log-optimal
portfolio.
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1 Introduction

There are various approaches to the problem of determining optimal dynamic investment policies,

depending on the objectives of the investor. In continuous time, which is the setting in this paper,

optimal dynamic investment policies for the objective of maximizing expected utility derived from

terminal wealth or consumption over a finite horizon as well as discounted utility of consumption

over. the infinite horizon are derived in the pioneering work of Merton [20]. Karatzas et al. [15],

among others, consider generalizations that incorporate bankruptcies as well as more general price

processes than those considered earlier. These results also have substantial implication for the

pricing and hedging of contingent claims, see for example Karatzas [14] or Cox and Huang [6].

However, there are many investment scenarios where approaches alternative to that of utility

maximization might be preferable. In particular, many actual investment objectives are related

solely to the achievement of specific goals. For example, in institutional money management, the

practice of benchmarking is quite prevalent. In this scenario, a portfolio manager is judged solely by

how his portfolio performs relative to that of another benchmark portfolio, or index. The Standard

and Poor's (S&P) 500 index is a typical example of a benchmark. There is a distinction made

between passive portfolio management, and active portfolio management (see e.g., Sharpe et al.[25]).

A passive portfolio manager is simply interested in tracking the index, while an active portfolio

manager is interested in beating the return of the predetermined given benchmark or index. From

the viewpoint taken here, the passive portfolio manager’s investment decision is uninteresting, since

we assume that for all intents and purposes, a passive portfolio manager can simply invest directly

in the benchmark. The active portfolio manager faces an interesting problem however, since he is

investing in order to beat a “goal”. The goal the active portfolio manager is trying to beat is the

stochastic return of the benchmark. As another example, consider the a pension fund manager who

is faced with a given liability stream, such as payouts to pensioners. The pension fund manager

is interested in ensuring that all the liabilities are met by a given deadline. This is also a goal

problem. In this paper we treat these two among other goal problems.

Optimal investment policies for objectives relating solely to the achievement of goals have

been studied previously, although perhaps not to the extent that utility maximization has. For

illustration, suppose the investor starts off with initial capital a < XO < b. Then, some classical

problems include determining an investment policy that (if appropriate) maximizes the probability

of reaching b before a, or (if appropriate) minimizes the expected time to the upper goal b. We can

refer to these, respectively, as the survival problem, and the growth problem. In discrete-time, and

over an infinite horizon, the survival problem is the centerpiece of the classical work of Dubins and

1
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Savage [7], and the growth problem was first studied in Breiman [1] (as an asymptotic property of the

policy first obtained in Kelly [17]). In continuous-time, the survival problem over an infinite horizon

was first solved for diffusion processes in Pestien and Sudderth [23]. Survival problems related

to various generalizations of the portfolio problem of Merton [20] were studied in Browne [3] and

Browne [4], The growth problem in continuous-time was studied in a general framework in Heath et

al. [12], Merton [21, Chapter 6], and generalized to a model that incorporated liabilities in Browne

[4], Gottlieb [10] considered a particular model in which the two objectives were synthesized,

specifically, minimizing the time to escape from an interval subject to a probability constraint on

leaving the interval in the “right” direction. However, all these results are specific to the case of an

infinite horizon. Since the performance of money managers is not judged over the infinite horizon,

but rather over a finite (sometimes quite short) horizon, these studies are not directly applicable to

the problem of active portfolio management. Similarly, in pension fund management, the horizon

is typically finite. With a finite horizon, the distinction between a survival problem and a growth

problem tends to blur, since in both cases they relate to maximizing probabilities: the survival

problem would be to maximize the probability that the lower goal is not hit before the horizon,

while the growth problem would be to maximize the probability that the upper goal is hit before

the deadline.

A finite-horizon goal problem was studied recently in Kulldorff [19], for a model with a single

risky favorable investment opportunist y. Kulldorff [19] obtained the optimal investment policy for

the objective of maximizing the probability that wealth attains a given constant goal by a fixed

terminal time. The return of the single risky asset was modeled as a Brownian motion with a time-

dependent drift coefficient and a constant diffusion coefficient. The goal as well as the constant

diffusion coefficient were both normalized to one. Heath [11] considered the same model, but with

constant drift as well and gave a different proof of the results in Kulldorff [19]. In both cases, there

was no risk-free asset available other than cash, which had a zero return. One of the interesting

features of their policy was the fact that for the case of a constant drift, the optimal policy was

independent of this underlying drift. No explanation of this rather remarkable fact was given.

In this paper, we address a variety of more general goal problems, all with probability maxi-

mizing objectives. To that end we first generalize the important results of Kulldorff [19] and Heath

[11] in a few fundamental ways: First, we expand the investment opportunity set to include a risk-

free asset that has a positive time-dependent rate of return, as well as multiple risky assets with

time-varying covariance structure. Our derivation and proof of the resulting optimal policy differs

considerably from, and simplifies, that of Kulldorff [19] – we first obtain a candidate optimal value

function by applying an extended version of the elegant argument in Heath [11], and then apply

2
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a new verification argument. We then extend our general results to treat the following cases: (i)

where the investor earns income from an exogenous source; (ii) where the investor has an external

liability stream, or forced consumption, as is the case in pension fund management; and (iii) where

the investor’s objective is to beat the (stochastic) return of a given benchmark portfolio.

The explanation as to why the optimal policy is independent of the underlying drift for the

single stock case with constant coefficients is provided as a byproduct of our analysis for the

more general case. It turns out that when there are multiple risky stocks, the optimal policy,

for maximizing the probability of attaining a preset level of wealth by a finite deadline, is no

longer independent of the drift parameters, even for the case of constant coefficients. The resulting

policy is quite interesting and we provide a new analysis that allows for a complete quantitative

assessment of the risk-taking behavior of an investor following such an objective. Furthermore,

we obtain a new representation of the optimal wealth process. This represent at ion, together with

the addition of a risk-free asset, allows us to exhibit a remarkable correspondence between the

probability maximizing policy and the hedging strategy of a digital option for the single-stock

constant coefficients case. In particular we show that the optimal dynamic investment strategy for

the objective of maximizing the probability of reaching a given goal by a fixed terminal time is

completely equivalent to the (static) investment strategy which simply purchases a European digital

call option on the underlying stock, with a particular strike price and payoff. This result is of

independent interest since it provides an example where a policy which is optimal for an objective

stated on wealth, is equivalent to the purchase of an option on the underlying stock. Moreover, it

also implicitly contains the explanation as to why the optimal policy is independent of the drift in

the constant coefficients single-stock case. For the general case, we are able to show a similar result,

however with the single stock replaced by the return of a particular portfolio policy: the optimal

growth, or log-optimal portfolio. Specifically, we will show that the probability maximizing policy

is completely equivlaent to purchasing a European digital option on the return of the log-optimal

portfolio.

A summary and outline of the remainder of the paper is as follows: In the next section, we

introduce the basic model with multiple stocks and a risk-free asset with positive return. In

Section 3 we provide the optimal policy for the problem of maximizing the probability of reaching

policy (Corollary 3.2 below). The proof is delayed until Section 6. In Section 4, we then use this

representation to show the correspondence between the single stock case with constant coefficients

and a digital option on the stock, as well as the correspondence with the digital option on the

log-optimal portfolio in the general case,

3
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In Section 5, we analyze the optimal policy for the general case. We first show that the optimal

policy can be interpreted as a linear function of wealth, where the coefficient decomposes into the

product of two distinct factors: (1) a purely time-dependent risk factor, which is determined solely

by the risk premiums of the stocks and the time remaining until the deadline; and (2) a purely

state-dependent function which is parameterized solely by the current percentage of the distance to

the (in our case, time-dependent) goal achieved. As intuition would suggest, the former function

typically increases as the horizon decreases, while the latter function decreases as the percentage

increases. The optimal policy is therefore a dynamic portfolio strategy that continuously rebalances

the portfolio weights depending upon how much time remains to the deadline as well as how close

the current wealth is to the goal. The interplay between these two factors is analyzed to a fairly

explicit extent next when we analyze the region where borrowing takes place. It turns out that

this region is determined by a single equation involving the “risk-adjusted” remaining time, and

the percentage of the goal achieved to that point.

In Section 7 we consider the case where the investor earns income from an external source

other than trading gains. We show that contrary to utility maximizing strategies – where an

investor uses the exogenous income to take a more risky position in stocks than he would otherwise
— a “probability maximizing” investor relies on this exogenous income to be more cautious. In

particular, we show that external income causes the investor to incorporate a performance bound:

if the performance of the stocks is such that wealth ever falls to the level that could have been

achieved by simply investing all the previous income into the risk-free asset, then all investment in

the risky stocks ceases.

In Section 8, we consider the case where the investor has a given liability stream that must be

met, as is the case in pension fund management. In this case it is possible for wealth to become

negative due to the external liabilities. We find the optimal policy for maximizing the probability

of reaching a preset level of wealth, subject to the regulatory constraint that reserves are always.
greater than the discounted value of the future liabilities.

In Section 9, we consider the case where the investor’s goal is to beat the return of a given

(stochastic) benchmark by a prespecified amount by a predetermined time. We also find the related

policy that allows the investor to control for the downside risk. When the stochastic benchmark is

given by the optimal growth policy, or equivalently, the policy that maximizes logarithmic utility,

which is sometimes referred to as the market portfolio in continuous-time finance, then certain

complications arise. Specifically, it is well known that the ratio of the return from any arbitrary

portfolio strategy to the return generated by the optimal growth strategy is a nonnegative local

martingale, hence a supermartingale (see, e.g., Karatzas [14, Section 9.6]). Nevertheless, we find
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a policy that does achieve the theoretical upper bound on the probability of beating the return of

the optimal growth by a predetermined amount, and is hence an optimal policy.

2 The Model

The model under consideration here is that of a complete market as in Merton [20, 21], Karatzas

[14] and others, wherein there are n (correlated) risky assets generated by n independent Brownian

motions. The prices of these stocks are assumed to evolve as

(2.1)
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ator of the (one-dimensional) wealth process as

(2.5)

The fundamental vector O(t), defined by

plays a pivotal role here since then according to the Girsanov theorem (cf. [16, Section 3.3.5]) the

vector process

defined by

and the vector θ ( t ) is also called the vector of risk premiums, or the market price of risk.

In the next section, we will give the optimal policy for the problem of maximizing the probability

that terminal wealth exceeds a predetermined level at the predetermined time T. The proof of this

theorem will be deferred until later, in Section 6.

3 Maximizing the probability of reaching a goal in finite-time

Remark on notation:

the associated PDF.

6
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(3.1)

(3.2)

recover the results of Kulldorff [19, Theorem 7]. Heath [11] used a different methodology to

and the optimal policy is

(3.3)

(3.4)

7
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(3.5)

It is important to note that it is only for this single-stock case that the optimal control is

in fact independent of the underlying drift parameter as is apparent from (3.5). In this

case, the investor always invests less in the risky stock when there is a risk-free asset with

r > 0 than he would in the corresponding case with r = O, treated earlier in [19] and [11].

and σ ( s ). ) As we will show in the next section, the policy of (3.5) is intimately connected to

the hedging strategy for a particular type of derivative security known as a digital option.

3.1 The Optimal Wealth Process

We will show later that the solution to this stochastic differential equation is given by the

following corollary.
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4 Connections with Digital Options

4.1  Constant  Coeff ic ients

Consider a Black-Scholes [2] world with a single stock whose price, St, follows the stochastic differ-

A digital (or binary) option on this stock, with strike price K and payoff B, is a contract that

price of the underlying stock, This is a particular example of an ‘exotic’ option that is discussed in

most standard references on options, such as Hull [13] or Wilmott et al. [27]. Digital options are

currently traded over the counter.

Let C(t, St) denote the current rational price of such an option. Then, a standard Black-Scholes

pricing argument shows that

(4.2)

The underwriter of such an option (i.e., the party that agrees to pay $B at T if ST > K ) is

interested in hedging its risk. A dynamic hedging strategy for the writer of such an option is a

t so as to ensure that the underwriter’s position is riskless at all times. It is also well known that

see that the hedging strategy for the digital option is simply

(4.3)

Observe that since At is the number of shares of the underlying stock the investor holds at time t,

General treatment of options that discuss pricing and hedging of various options, including the

digital and the derivation of (4.2) and (4.3) can be found in such basic texts as [13] and [27]. A

valuable source for more theoretical issues is the survey by Karatzas [14].

To see the connection with our problem, consider an investor who at time t has sold this digital

option for the Black-Scholes price of C(t, St), and suppose the investor will then invest the proceeds

in such a manner as to maximize the probability that he can pay off the claim of this option at time

9
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T, i.e., for all intents and purposes, the investor's "wealth" at time t is C(t,St), and the investor

will then invest this wealth so as to maximize the probability that the terminal fortune from this’

strategy is equal to B. Our previous results show that the optimal policy is at time t is given by

(3.5) with b = B and simplifying gives

option.

Moreover, if we specialize the representation of the optimal wealth process given in Corollary 3.2,

Note that there is no explicit dependence on 

be the Black-Scholes price of the digital option

in (4.6). If the investor's initial wealth is taken to
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Scholes price for a digital option with payoff B !

It is interesting to note that the Black-Scholes value (4.2) and its resulting hedging strategy

(4.3) are both calculated and determined by the risk-neutral probability measure (under which is

replaced by r), while the optimal strategy for maximizing the probability y of terminal wealth being

greater than B was determined under the regular measure.

The analysis above can be inverted to show the following rather interesting fact:

Proposition 4.1 Consider an investor, with initial wealth Xo, whose objective is to maximize the

probability that terminal wealth at time T exceed some fixed level B, and who has the following two

investment opportunities — the risky stock St of (4.1) and a bond with constant return r. Then

static policy that purchases (at time O) one European call digital option with payoff B and strike

price K*, where K* is given by

(4.7)

a digital option with payoff B and strike price K*.

Remark 4.1: It is important to note that the results of this section are specific to the constant

coefficient case in one-dimension and do not generalize to the time-dependent case in even

one-dimension, nor to the multi-dimensional constant-coefficient case. The reason for this is

of a corresponding simple event determined by ST alone, which leads to the equivalence with

the digital option, whose price must be independent of µ by risk neutral valuation arguments.

For more general cases, this does not occur. However, as we will show directly, the general

case is intimately connected to a digital option on a particular portfolio, namely the growth-

optimal portfolio.

11
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4.2 The General

For the general model

Case: Optimal Growth and Digital Options

of-measure of (2.8) by

The main result of

hedging strategy for a

is therefore equivalent

this section is that the optimal policy of Theorem 3.2 is equivalent to the

digital option on π T, and so the optimal wealth process of Corollary 3.2

to the Black-Scholes price on this option. Before we state this formally,

12
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Remark 4.2: Note that in terms of the optimal growth policy, we may write the optimal policy,

Theorem 3.1, is completely equivalent to the static policy which purchases a European digital option

When we substitute K** of (4.13) back into this, we obtain (4.14).

13
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computation shows that for this case we have

(4.16)

K}, then a simple

must take a fairly active position in the stocks since is also going to O.

(5.1)

Then we may write the optimal policy as

14
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Introducing now the variable

allows us to rewrite this in terms of v as

(5.2)

Equation (5.2) represents the optimal investment strategy as a linear function of wealth (x)

It is easy to see that for a fixed t, as wealth gets closer to the effective goal, and so z increases

as does v, this latter quantity decreases. The effect of increasing t on the former quantity is not

5.1 The borrowing region

It is interesting to examine the nature of risk-taking dictated by the policy described above. One

15
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the risk adjusted time to

16
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T

.001
.05
.10
.15
.20
.25
.30
.35
.40
.45
.50

As expected, we see that as wealth approaches the goal, the state dependent factor goes to O,

but as wealth approaches O, the state dependent factor increases without bound even though,

17
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as we observed previously, total investment in the risky stocks actually decreases to O in this

case.

5.2 Comparison with Utility Maximizing Policies

(Note that this includes logarithmic utility, when = 1.) This power utility function has constant

Merton [20], Karatzas [14])

6 Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. We will first show that the function V

satisfies the appropriate Hamilton-Jacobi-Bellman (HJB) equations of stochastic control theory

and then employ a martingale argument to verify optimality. This will prove the Theorem as well

as Corollary 3.2. We then show how we obtained the candidate value function by extending the

elegant argument of Heath [11] to our case.

6.1 Verification of Optimality

Standard arguments in control theory (see e.g., Fleming and Rishel [8, Example 2, p. 161]) shows

that the appropriate Hamilton-Jacobi-Bellman (HJB) optimality equation for V is

(6.1)

18
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.

(6.6)

it can be verified that for the function V(t,x;b) of (3.1), we have

When these derivatives are placed back into (6.5), it is seen that in fact V solves (6.5), and so

Moreover, it is also seen that the first two boundary conditions in (6.2) are satisfied for V of

19
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"probability maximizing objectives") is discussed in Fleming and Rishel [8, Example 2, Page 161];

where it is shown that such a discontinuity y is acceptable, provided that the optimal wealth process,

(That is, the optimal terminal wealth must be equal to one of the two barriers, 0 or b. ) We will

show directly and rigorously that this condition is in fact met here, although it is easy to see that

.

determined by the stochastic

then shows that

Another application of Ito’s formula will verify that the solution to (6.10) is

Inspection of (6.11) shows that HT is either O or 1, and that moreover,

which is the desired

Note further that
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6.2 Obtaining the candidate value function

While we have already shown that V does indeed solve the HJB equation, we have not actually

solved the resulting nonlinear partial differential equation (6.5) directly for V. Rather, we obtained

value function we

(6.13)

Find U(t,y;c) :=

A HJB argument then

appropriately we obtain

(6.16)

(6.17)
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All we need do now

with

(6.18)

(6.16) and (6.17) are central to the remainder of the paper.

In this section we analyze the case where the investor has an exogenous (deterministic) income

s. The investor’s wealth then evolves according to

(7.2)

(7.3)

The optimal value function and optimal policy for maximizing the probability that the investor

achieves the wealth level b by the terminal time T are given in the following theorem.
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Theorem 7.1 For an investor whose wealth process follows (7.1),

and the associated optimal investment policy is

The economic interpretation of (7.6) is clear since we may rewrite

which shows directly that by investing current wealth ( x ) and all future income in the riskless

asset, the goal b can be reached with certainty at time T.
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the optimal policy for an investor who wishes to maximize expected logarithmic utility of

terminal wealth at time 2’, is to invest

which is the same as (6.13) and (6.14). Thus we observe immediately that if

policy given in (7.5) is indeed optimal for the problem of maximizing the probability of attaining

the goal b by time T.

24



F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

3

8 Liabilities

pension fund management. The reserves of the pension fund evolve according to

We may again invert this to deduce that in terms of a goal problem for

(8.1) - with arbitrary b,

(8.5)

(8.6)
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(8.7)

We may therefore deduce directly that the policy given by by

is indeed optimal for the problem of maximizing the probability of attaining the goal b by time T.

However, there is a new problem for this model which was not in effect in the cases treated earlier,

(8.8)

This of course causes no problems in terms of the general control problem that we consider, since

from the bank whenever wealth is negative so long as (8.8) is met. However, suppose there is also

a hard nonnegativity constraint on wealth, what should the pension fund manager do ? While we

don’t have a complete answer to this problem yet, we can address the problem of how the pension

be greater than the current discounted value of future liabilities, i.e.,

We give the answer in the following theorem. To ease notation somewhat, let

(8.9)

(8.10)

given by

as

(8.11)

and the associated optimal investment policy is given by

(8.12)
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Remark 8.2: Observe the ‘portfolio insurance' type of behavior that is implicit in (8.12), in that

a role in the policy.

with optimal control function

9 Beating another Portfolio

In this section we apply our earlier results to derive optimal portfolio strategies for an investor,

such as a fund manager, who is interested solely in beating a given stochastic benchmark. The

benchmark is most typically an index, such as the S&P 500. In particular, it is just one specific

portfolio strategy. First we show that the problem of beating the actual value of the benchmark

27
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by a constant absolute amount is just a simple application of our earlier results – but only for

the trivial case in which wealth is already greater than the benchmark. Next we consider the

more interesting problem of beating the benchmark portfolio by a given percentage, which is the

focal point of active portfolio management. We then find the related policy which corrects for the

downside risk. When the benchmark portfolio strategy is the optimal growth policy, then the ratio

of the wealth from any arbitrary portfolio strategy to the benchmark is in fact a supermartingale,

and as such problems arise. Nevertheless, we are able to find a strategy which does achieve the

maximal possible probability of beating the optimal growth policy by a prespecified percentage by

a fixed deadline.

9.1 Beating the benchmark by an absolute amount

then, since
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(9.6)

Then it is clear that we have

As such its value function is U(t, z : 1 + λ ) of

9.3 Controlling for Downside Risk

(9.9)
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.

then shows that

But this last term is precisely the problem considered earlier in Theorem 9.1., where the nonnega-

(9.10)

this problem is therefore given by
.



F
or

 a
n 

el
ec

tr
on

ic
 c

op
y 

of
 th

is
 p

ap
er

, p
le

as
e 

vi
si

t: 
ht

tp
://

ss
rn

.c
om

/a
bs

tr
ac

t=
70

3

inequality is independent of “ -”
. .

the policy, we can extend it to

F of (9.5) — treated as a function of γ — is not continuous at γ = 0.However, the value function

This

the optimal value function is

(9.15)

Remark 9.1: Note that the linear form of the value function in (9.15) precludes us from using

any HJB methods.
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.

The solution to this stochastic differential equation is

is equal to 1 or O, with
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A Appendix

A.1 The Argument in Heath [11]

and hence the corresponding P probability is
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