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strategies are analyzed both theoreti
ally and empiri
ally. The theo-reti
al results show that the asymptoti
 rate of growth mat
hes theoptimal one that one 
ould a
hieve with a full knowledge of the sta-tisti
al properties of the underlying pro
ess generating the market,under the only assumption that the market is stationary and ergodi
.The empiri
al results show that the performan
e of the proposed in-vestment strategies measured on past nyse and 
urren
y ex
hangedata is solid, and sometimes even spe
ta
ular.Key words and phrases: sequential investment, universal portfolios, ker-nel estimation.
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1 Introdu
tionThe purpose of this paper is to investigate sequential investment strategiesfor �nan
ial markets. Investment strategies are allowed to use information
olle
ted from the past of the market and determine, at the beginning ofa trading period, a portfolio, that is, a way to distribute their 
urrent
apital among the available assets. The goal of the investor is to maximizehis wealth on the long run without knowing the underlying distributiongenerating the sto
k pri
es. Sin
e a

urate statisti
al modeling of sto
kmarket behavior has been known as a notoriously di�
ult problem, wetake an extreme point of view and work with minimal assumptions on thedistribution of the time series. In fa
t, the only assumption we use in ourmathemati
al analysis is that the daily pri
e relatives form a stationaryand ergodi
 pro
ess. Under this assumption the asymptoti
 rate of growthhas a well-de�ned maximum whi
h 
an be a
hieved in full knowledge ofthe distribution of the entire pro
ess, see Algoet and Cover [3℄.Universal pro
edures a
hieving the same asymptoti
 growth rate with-out any previous knowledge have been known to exist, see Algoet [1℄, Györ�and S
häfer [17℄. In this paper new universal strategies are proposed whi
hnot only guarantee an optimal asymptoti
 growth rate of 
apital for allstationary and ergodi
 markets, but also have a good �nite-horizon per-forman
e in pra
ti
e. This is demonstrated on an experimental study inwhi
h the performan
e of the proposed methods is measured on di�erentdata sets, in
luding past New York Sto
k Ex
hange (nyse) data spanninga twenty-two-year period with thirty six sto
ks in
luded, and 
urren
y ex-
hange values of eight 
urren
ies over a �fteen-year period.The experimental results demonstrate that the proposed methods areable to �nd, and e�e
tively exploit, hidden 
ompli
ated dependen
es ofasset pri
es on the past evolution of the market.To make the analysis feasible, some simplifying assumptions are usedthat need to be taken into a

ount. First of all, we assume that assets arearbitrarily divisible and all assets are available in unbounded quantities atthe 
urrent pri
e at any given trading period. We also ignore transa
tion
osts in the mathemati
al analysis, though some of the experimental results3



are also presented with transa
tion 
osts present. Another key assumptionis that the behavior of the market is not a�e
ted by the a
tions of the in-vestor using the strategy under investigation. This assumption is realisti
when the investor handles small amounts of 
apital 
ompared to the totaltrading volume on the market. Under this hypothesis, testing the methodson past sto
k-market data is meaningful. On the other hand, the spe
ta
u-lar growth of 
apital demonstrated by some of the proposed methods (e.g.,by a fa
tor of more than 108 during twenty two years on the New YorkSto
k Ex
hange) should be interpreted with 
are, sin
e su
h an explosivegrowth in real markets would inevitably be a

ompanied by some rea
tionof the market whose e�e
t is not taken into a

ount neither in the theoreti-
al results, nor in the experimental �gures based on past pri
e �u
tuations.In spite of these simpli�
ations, we feel that our numeri
al results providea strong empiri
al eviden
e for the ine�
ien
y of the sto
k markets. Thismay partially be explained by the fa
t that the dependen
e stru
tures ofthe markets revealed by the proposed investment strategies are quite 
om-plex and even though all information we use is publi
ly available, the waythis information 
an be exploited remains hidden from most traders.The rest of the paper is organized as follows. In Se
tion 2 the mathemat-i
al model is des
ribed, and related results are surveyed brie�y. In Se
tion3 a family of kernel-based nonparametri
 sequential investment strategiesis introdu
ed and its main 
onsisten
y properties are stated. Numeri
alresults based on various data sets are des
ribed in Se
tion 4. The proof ofthe main theoreti
al result (Theorems 1 and 2) is given in Se
tion 5.2 Setup, mathemati
al modelThe model of sto
k market investigated in this paper is the one 
onsidered,among others, by Breiman [8℄, Algoet and Cover [3℄, Cover [10℄. Considera market of d assets. A market ve
tor x = (x(1), . . . x(d)) 2 Rd
+ is a ve
torof d nonnegative numbers representing pri
e relatives for a given tradingperiod. That is, the j-th 
omponent x(j) � 0 of x expresses the ratio of the
losing and opening pri
es of asset j. In other words, x(j) is the fa
tor bywhi
h 
apital invested in the j-th asset grows during the trading period.4



The investor is allowed to diversify his 
apital at the beginning of ea
htrading period a

ording to a portfolio ve
tor b = (b(1), . . . b(d)). The j-th
omponent b(j) of b denotes the proportion of the investor's 
apital investedin asset j. Throughout the paper we assume that the portfolio ve
tor b hasnonnegative 
omponents with ∑d

j=1 b(j) = 1. The fa
t that ∑d

j=1 b(j) = 1means that the investment strategy is self �nan
ing and 
onsumption of
apital is ex
luded. The non-negativity of the 
omponents of b meansthat short selling and buying sto
ks on margin are not permitted. Let S0denote the investor's initial 
apital. Then at the end of the trading periodthe investor's wealth be
omes
S1 = S0

d∑

j=1

b(j)x(j) = S0 hb , xi ,where h� , �i denotes inner produ
t.The evolution of the market in time is represented by a sequen
e ofmarket ve
tors x1, x2, . . . 2 Rd
+, where the j-th 
omponent x

(j)
i of xi denotesthe amount obtained after investing a unit 
apital in the j-th asset on the

i-th trading period. For j � i we abbreviate by xi
j the array of marketve
tors (xj, . . . , xi) and denote by ∆d the simplex of all ve
tors b 2 Rd

+with nonnegative 
omponents summing up to one. An investment strategyis a sequen
e B of fun
tions
bi :

�Rd
+

�i−1 → ∆d , i = 1, 2, . . .so that bi(x
i−1
1 ) denotes the portfolio ve
tor 
hosen by the investor on the

i-th trading period, upon observing the past behavior of the market. Wewrite b(xi−1
1 ) = bi(x

i−1
1 ) to ease the notation.Starting with an initial wealth S0, after n trading periods, the invest-ment strategy B a
hieves the wealth

Sn = S0

n∏

i=1

D
b(xi−1

1 ) , xi

E
= S0e

∑n
i=1 loghb(xi−1

1
),xii = S0e

nWn(B).where Wn(B) denotes the average growth rate
Wn(B) =

1

n

n∑

i=1

log Db(xi−1
1 ) , xi

E
.5



Obviously, maximization of Sn = Sn(B) and maximization of Wn(B) areequivalent.In modeling the behavior of the evolution of the market, two main ap-proa
hes have been 
onsidered in the theory of sequential investment. Oneof them allows the market sequen
e x1, x2, . . . to take 
ompletely arbitraryvalues and no sto
hasti
 model is imposed on the me
hanism generatingthe pri
e relatives, see, for example, Cover [10℄, Cover and Ordentli
h [11℄,Singer [22℄, Hembold, S
hapire, Singer, and Warmuth [18℄, Ordentli
h andCover [21℄, Vovk and Watkins [26℄, Blum and Kalai [5℄, Borodin, El-Yaniv,and Gogan [6℄, Cesa-Bian
hi and Lugosi [9℄, Cross and Barron [12℄, Stoltzand Lugosi [24℄. In this approa
h the a
hieved wealth is 
ompared withthat of the best in a 
lass of referen
e strategies. For example, Cover [10℄
onsiders the 
lass of all 
onstantly rebalan
ed portfolios (
rp) de�ned bystrategies B for whi
h bi(x
i−1
1 ) equals a �xed portfolio ve
tor independentlyof i and the past xi−1

1 . Cover showed that there exist investment strategies
B (so-
alled universal portfolios) whi
h perform almost as well as the best
onstantly rebalan
ed portfolio in the sense that

Wn(B) � max
C2C Wn(C) −

 
d − 1

2n
logn + O

 
1

n

!!for all possible market sequen
es xn
1 , where C denotes the 
lass of all 
on-stantly rebalan
ed portfolios. This result has been extended in variousways in the above-mentioned referen
es.The advantage of this �worst-
ase� approa
h is that it avoids imposingstatisti
al models on the sto
k market and the results hold for all possiblesequen
es xn

1 . In this sense this approa
h is extremely robust. However, itis di�
ult to 
ontrol the behavior of the best strategy in the referen
e 
lass.For example, 
onstantly rebalan
ed portfolios are known to be asymptot-i
ally optimal if the market ve
tors x1, . . . , xn are realizations of an inde-pendent, identi
ally distributed sequen
e of random ve
tors (see below) butare insu�
ient if the market ve
tors of di�erent trading periods have a sta-tisti
al dependen
e, whi
h seems to be the 
ase in real-world markets. Forthis reason, larger referen
e 
lasses have also been 
onsidered (see, e.g., theside-information model of Cover and Ordentli
h [11℄, the swit
hing portfo-6



lios of Singer [22℄ and also Cross and Barron [12℄) but similar limitationsstill hold.Another possibility is to assume that the market ve
tors are realizationsof a random pro
ess, and des
ribe a statisti
al model. The advantage ofthis view more 
lassi
al view is that, for ea
h pro
ess, an optimal strat-egy may be determined (in a sense spe
i�ed below), whi
h depends on theunknown distribution of the pro
ess, and use the past market sequen
e toestimate the statisti
al features ne
essary to approximate the optimal strat-egy. However, one has to pro
eed with 
are sin
e 
ompli
ated dependen
esin time and a
ross sto
ks make statisti
al modeling extremely di�
ult.In this paper we adopt a 
ompromise between the worst-
ase and thestatisti
al approa
hes. Even though we assume that the market sequen
e isa realization of a random pro
ess, we do not assume any parametri
 stru
-ture on the distribution or on the time dependen
es. Our view is 
ompletelynonparametri
 in that the only assumption we use is that the market is sta-tionary and ergodi
, allowing arbitrarily 
omplex distributions. The mainmessage of this paper is that there exist 
ompletely nonparametri
 invest-ment strategies that e�e
tively �nd these hidden 
omplex dependen
es inthe past data and are able to use this information to produ
e a rapid growthof the 
apital.More pre
isely, assume that x1, x2, . . . are realizations of the randomve
tors X1, X2, . . . drawn from the ve
tor-valued stationary and ergodi
pro
ess {Xn}∞−∞ . (Note that by Kolmogorov's theorem any stationary andergodi
 pro
ess {Xn}∞1 
an be extended to a bi-in�nite stationary pro
esson some probability spa
e (Ω,F ,P), su
h that ergodi
ity holds for both
n → ∞ and n → −∞). The sequential investment problem, under these
onditions, have been 
onsidered by, e.g., Breiman [8℄, Algoet and Cover[3℄, Algoet [1, 2℄, Walk and Yakowitz [27℄, Györ� and S
häfer [17℄. Thefundamental limits, determined in [3℄, [1, 2℄, reveal that the so-
alled log-optimum portfolio B� = {b�(�)} is the best possible 
hoi
e. More pre
isely,on trading period n let b�(�) be su
h thatE { log Db�(Xn−1

1 ) , Xn

E���Xn−1
1

}
= max

b(�) E { log Db(Xn−1
1 ) , Xn

E���Xn−1
1

}
.If S�n = Sn(B�) denotes the 
apital a
hieved by a log-optimum portfolio7



strategy B�, after n trading periods, then for any other investment strategy
B with 
apital Sn = Sn(B) and for any stationary and ergodi
 pro
ess
{Xn}∞−∞ , lim sup

n→∞

1

n
log Sn

S�n � 0 almost surelyand lim
n→∞

1

n
log S�n = W� almost surely,where

W� = E {max
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}}is the maximal possible growth rate of any investment strategy. (Notethat for i.i.d. markets W� = maxb E {log hb , X0i} whi
h shows that in this
ase the log-optimal portfolio is a 
onstantly rebalan
ed portfolio, see alsoBreiman [8℄, Kelly [19℄, Latané [20℄, Finkelstein and Whitley [13℄, andBarron and Cover [4℄.)Thus, (almost surely) no investment strategy 
an have a faster rateof growth than a log-optimal portfolio. Of 
ourse, to determine a log-optimal portfolio, full knowledge of the (in�nite-dimensional) distributionof the pro
ess is required. Strategies a
hieving the same rate of growthwithout knowing the distribution are 
alled universal in this paper. Morepre
isely, an investment strategy B is 
alled universal with respe
t to a
lass of stationary and ergodi
 pro
esses {Xn}∞−∞, if for ea
h pro
ess in the
lass, lim
n→∞

1

n
log Sn(B) = W� almost surely.The surprising fa
t that there exists a strategy, universal with respe
t tothe 
lass of all stationary and ergodi
 pro
esses was proved by Algoet [1℄.Algoet's 
onstru
tion is, however, quite 
omplex and, despite of its theoret-i
al importan
e, has little pra
ti
al value. Algoet also introdu
ed a simplers
heme and sket
hed the proof of its universality, whi
h was 
ompleted byGyör� and S
häfer [17℄.Next we des
ribe Györ� and S
häfer's version of Algoet's s
heme asthe investment strategies de�ned in this paper are generalizations of this8



method. We 
all this s
heme a histogram-based investment strategy anddenote it by BH.
BH is 
onstru
ted as follows. We �rst de�ne an in�nite array of ele-mentary strategies (the so-
alled experts) H(k,ℓ) = {h(k,ℓ)(�)}, indexed bythe positive integers k, ℓ = 1, 2, . . .. Ea
h expert H(k,ℓ) is determined by aperiod length k and by a partition Pℓ = {Aℓ,j}, j = 1, 2, . . . , mℓ of Rd

+ into
mℓ disjoint sets. To determine its portfolio on the nth trading period, ex-pert H(k,ℓ) looks at the market ve
tors xn−k, . . . , xn−1 of the last k periods,dis
retizes this kd-dimensional ve
tor by means of the partition Pℓ, anddetermines the portfolio ve
tor whi
h is optimal for those past trading pe-riods whose pre
eding k trading periods have identi
al dis
retized marketve
tors to the present one. Formally, let Gℓ be the dis
retization fun
tion
orresponding to the partition Pℓ, that is,

Gℓ(x) = j, if x 2 Aℓ,j .With some abuse of notation, for any n and xn
1 2 Rdn, we write Gℓ(x

n
1) forthe sequen
e Gℓ(x1), . . . , Gℓ(xn). Then de�ne the expert H(k,ℓ) by writing,for ea
h n > k + 1,

h(k,ℓ)(xn−1
1 ) = argmax

b2∆d

∏

{k<i<n:Gℓ(x
i−1
i−k

)=Gℓ(x
n−1
n−k

)}

hb , xii , (1)if the produ
t is non-void, and uniform b0 = (1/d, . . . , 1/d) otherwise.That is, h(k,ℓ)
n dis
retizes the sequen
e xn−1

1 a

ording to the partition Pℓ,and browses through all past appearan
es of the last seen dis
retized string
Gℓ(x

n−1
n−k) of length k. Then it designs a �xed portfolio ve
tor optimizingthe return for the trading periods following ea
h o

urren
e of this string.The histogram-based strategy BH forms a �mixture� of all experts H(k,ℓ)using a probability distribution {qk,ℓ} on the set of all pairs (k, ℓ) of positiveintegers su
h that for all k, ℓ, qk,ℓ > 0. The strategy BH simply weighs theexperts H(k,ℓ) a

ording to their past performan
es and {qk,ℓ} su
h that afterthe nth trading period, the investor's 
apital be
omes

Sn(BH) =
∑

k,ℓ

qk,ℓSn(H(k,ℓ)),9



where Sn(H(k,ℓ)) is the 
apital a

umulated after n periods when using theportfolio strategy H(k,ℓ) with initial 
apital S0. This may easily be a
hievedby distributing the initial 
apital S0 among all experts su
h that expert
H(k,ℓ) trades with initial 
apital qk,ℓS0. It is shown in [17℄ that the strategy
BH is universal with respe
t to the 
lass of all ergodi
 pro
esses su
h thatE {| log X(j)|} < ∞, for all j = 1, 2, . . . , d under the following two 
onditionson the partitions used in the dis
retization:(a) the sequen
e of partitions is nested, that is, any 
ell of Pℓ+1 is a subsetof a 
ell of Pℓ, ℓ = 1, 2, . . .;(b) if diam(A) = supx,y2Akx − yk denotes the diameter of a set, then forany sphere S � Rd 
entered at the origin,lim

ℓ→∞
max

j:Aℓ,j\S6=; diam(Aℓ,j) = 0 .Remark. In the above-mentioned result, the only 
ondition on the marketpro
ess is that E {| log X(j)|} < ∞. However, this 
ondition is not very re-stri
tive for two reasons. First, most �real� markets obviously satisfy su
ha 
ondition. Se
ond, the result may be generalized so that it in
ludes allergodi
 market pro
esses by using a slightly more 
ompli
ated s
heme sug-gested by Algoet [1℄. This s
heme uses a three-dimensional array h(k,ℓ,m)of experts de�ned by
h(k,ℓ,m) = (1 − λm)h(k,ℓ) + λmb0 ,where λm 2 (0, 1) is a sequen
e of numbers 
onverging to zero and b0 isthe uniform portfolio (1/d, . . . , 1/d).3 Kernel-based investment strategiesIn this se
tion we introdu
e a 
lass of kernel-based investment strategiesand prove their universality. Kernel-based rules allow a more �exible way ofextra
ting information from the history of the market. The family of meth-ods introdu
ed here is similar, in spirit, to the histogram-based strategy10



des
ribed in the previous se
tion. The main di�eren
e is that the elemen-tary strategies used by the strategy repla
e the rigid dis
retization of thepast few market ve
tors by a more �exible �moving-window� rule. By ap-propriate weighing by a kernel fun
tion a whole ri
h family of strategies isobtained. The main theoreti
al result of this se
tion is the universality ofthese strategies under general assumptions. The numeri
al results shownin Se
tion 4 indi
ate the pra
ti
al superiority of kernel-based methods.To simplify notation we start with the simplest �moving-window� ver-sion, 
orresponding to a uniform kernel fun
tion, and treat the general 
asebrie�y later.The kernel-based strategy BK is 
onstru
ted similarly to the histogram-based portfolio BH des
ribed in the previous se
tion. Just like before, westart by de�ning an in�nite array of experts H(k,ℓ) = {h(k,ℓ)(�)}, where k, ℓare positive integers. To de�ne H(k,ℓ), let c > 0 be a 
onstant possiblydepending on k and d. For �xed positive integers k, ℓ and for ea
h ve
tor
s = s−1

−k of dimension kd de�ne the portfolio ve
tor, for n > k + 1,
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∏

{k<i<n:kxi−1
i−k

−sk�c/ℓ}

hb , xii ,if the produ
t is non-void, and b0 = (1/d, . . . , 1/d) otherwise. If the prod-u
t is non-void then we may re-write this de�nition as
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∑
{k<i<n:kXi−1

i−k
−sk�c/ℓ} log hb , xii���{k < i < n : kxi−1

i−k − sk � c/ℓ
}��� .Finally, we de�ne the expert h(k,ℓ) by

h(k,ℓ)(xn−1
1 ) = b(k,ℓ)(xn−1

1 , xn−1
n−k), n = 1, 2, . . . (2)That is, h(k,ℓ)

n dis
retizes the sequen
e xn−1
1 , and browses through all pastapproximate appearan
es of the last seen ve
tor xn−1

n−k. Then it designsa �xed portfolio ve
tor a

ording to the returns on the periods followingthese approximate appearan
es.These experts are mixed the same way as in the 
ase of the histogram-based strategy. That is, let {qk,ℓ} be a probability distribution over the set11



of all pairs (k, ℓ) of positive integers su
h that for all k, ℓ, qk,ℓ > 0. Thestrategy BK weighs the experts H(k,ℓ) a

ording to their past performan
esand {qk,ℓ} by
b(xn−1

1 ) =

∑
k,ℓ qklSn−1(H

(k,ℓ))h(k,ℓ)(xn−1
1 )∑

k,ℓ qklSn−1(H
(k,ℓ))

,where Sn(H(k,ℓ)) is the 
apital a

umulated by the elementary strategy
H(k,ℓ) after n periods when starting with an initial 
apital S0. Thus, afterperiod n, the investor's 
apital be
omes

Sn(BK) =
∑

k,ℓ

qk,ℓSn(H(k,ℓ)) .The main result of this se
tion, whose proof is given in Se
tion 5 below,states the universality of the s
heme de�ned above:Theorem 1 The portfolio s
heme BK is universal with respe
t to the
lass of all ergodi
 pro
esses su
h that E {| log X(j)|} < ∞, for j = 1, 2, . . . d.Remark. The assumption of the �niteness of the E {| log X(j)|} may beweakened similarly as in the 
ase of the histogram-based strategy des
ribedin the previous se
tion.Remark. (parameters.) For the universality of the method, it su�
es toassume that the initial weights qk,ℓ are stri
tly positive. However, in pra
-ti
e, for good �nite-time behavior, the role of these weights is important.For good pra
ti
al performan
e, qk,ℓ, as well as other parameters su
h asthe 
onstant c have to be �ne tuned. Some possible 
hoi
es are given inSe
tion 4.Remark. (transa
tion 
osts.) As mentioned in the introdu
tion, amain simplifying (and unrealisti
) assumption in our analysis is that trans-a
tion 
osts are ignored. It follows from a result of Blum and Kalai [5℄ thatif the market pro
ess X1, X2, . . . is a sequen
e of independent and identi-
ally distributed ve
tors then there exists an investment strategy whoseasymptoti
 rate of growth equals W�. However, it is easy to see that, in12



general, if the market is stationary but not ne
essarily i.i.d. then a
hievingthe optimal rate of growth in the presen
e of transa
tion 
osts is impossi-ble. To see this, 
onsider the simple markovian example in whi
h d = 2and, deterministi
ally, when n is odd, X(1)
n = 0 and X(2)

n = 1 and when
n is even, X(1)

n = 1 and X(2)
n = 0. In this 
ase 
learly W� = 0, but toa
hieve it, the total wealth has to be moved ea
h in period from one as-set to another, and transa
tion 
osts for
e a rate of growth bounded awayfrom zero (from below). However, in pra
ti
e, simple modi�
ations of thekernel-based strategies may work quite well even when transa
tion 
ostsare present. Some numeri
al examples are o�ered in Se
tion 4.Remark. (validity os assumptions.) The theoreti
al results assumelittle more than stationarity and ergodi
ity of the market. Obviously, thereis no empiri
al test to de
ide whether a market satis�es these propertiesor not. The pra
ti
al usefulness of these assumptions should be judgedbased on the numeri
al results the investment strategies lead to. In thenext se
tion we des
ribe various su
h results based on past data. Theseresults suggest that the market 
an be modeled e�e
tively by a low-orderstationary Markov pro
ess. This is eviden
ed by the good behavior of someexperts that operate on su
h an assumption. We emphasize again that thesenumeri
al results ignore the e�e
t using su
h a strategy may have on themarket.Remark. (volatility.) In this paper we 
ompletely ignore the issue ofvolatility and fo
us on almost sure 
onvergen
e of the growth rate (1/n) logSn.Controlling the volatility of the pro
ess is obviously a relevant and non-trivial problem. On
e again we refer the reader to the numeri
al results ofthe next se
tion that suggest that the a
hieved wealth, in fa
t, has a lowvolatility. However, we do not have any theoreti
al guarantees.Next we des
ribe a 
lass of general kernel-based investment strategies.These strategies are based on a sequen
e of kernel fun
tion Kk : Rkd

+ → R+.The de�nition of a generalized kernel-based strategy parallels that of BKde�ned above with the only di�eren
e that in the de�ning equation (2) ofthe elementary strategies H(k,ℓ), the portfolio ve
tor b(k,ℓ)(xn−1
1 , s) is de�ned13



by
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∏

k<i<n

hb , xii w
(k,ℓ)

i∑
k<j<n w

(k,ℓ)

j ,where the weights w
(k,ℓ)
i are de�ned by

w
(k,ℓ)
i = Kk

�
ℓ(xi−1

i−k − s)
�and 0/0 is understood as 0.Observe that if Kk is the uniform (or moving window) kernel Kk(x) =Ikxk�c (x 2 Rkd

+ ) then we re
over the de�nition of the strategy BK introdu
edabove. Typi
al nonuniform kernels assign a smaller weight to those xi forwhi
h the distan
e of xi−1
i−k from s is larger. Su
h kernels promise a betterpredi
tion of the lo
al stru
ture of the 
onditional distribution. The nextresult extends Theorem 1 to a 
lass of general kernels. The proof is givenin Se
tion 5.Theorem 2 Assume that for ea
h k = 1, 2, . . . the kernel Kk is su
h thatthere exists a non-in
reasing fun
tion φk de�ned on R+ with φk(+0) >

0 and limt→∞ tdφk(t) = 0 su
h that for some 
onstants c1, c2 > 0, forall x 2 Rkd
+ ,

c1φk(kxk) � Kk(x) � c2φk(kxk) .Then the kernel-based portfolio s
heme de�ned above is universal withrespe
t to the 
lass of all ergodi
 pro
esses su
h that E {| log X(j)|} < ∞,for j = 1, 2, . . . d.4 Pra
ti
al implementation and numeri
al re-sultsThe purpose of this se
tion is to dis
uss some issues of the pra
ti
al imple-mentation of the investment strategies BH and BK des
ribed in the previousse
tions and to report numeri
al results of the appli
ation of the algorithmsto real �nan
ial data. 14



Both strategies have in 
ommon that they use an in�nite array of ex-perts. In pra
ti
e, one 
hooses two positive integers K and L and repla
ethe in�nite array of elementary strategies by a �nite array of KL experts
H(k,ℓ), k = 1, . . . , K, ℓ = 1, . . . , L de�ned by (1) and (2), for both strategies.Re
all that k is the length of the re
ent market history mat
hed by datain the past and ℓ indexes the �neness of the dis
retization s
heme in use,usually �ner as ℓ in
rease. We also in
lude, as an additional expert, withindex k = ℓ = 0, the strategy that uses the full history to 
al
ulate theportfolio by

h(0,0)(xn−1
1 ) = argmax

b2∆d

∏

0<i<n

hb , xii , n > 1 .In all 
ases reported below we used the uniform distribution {qk,ℓ} = 1/(KL+

1) over the experts in use.The next table gives a s
hemati
 des
ription of the algorithm imple-menting the strategies des
ribed in Se
tions 2 and 3.
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Given x1, . . . , xn−1 2 Rd, to 
ompute the portfolio for the n-th tradingperiod,1. for ea
h expert (k, ℓ), k = 1..K, ℓ = 1..L do1.1 ComputeHistory(k,l): 
olle
t the data from those trainingperiods in the past that followed a k-period string simi-lar to xn−k, . . . , xn−1 and pla
e these periods in the historylist. What �similar� means depends on whether we use ahistogram-based strategy (see below) or a kernel-based strat-egy, where all past periods are weighted as des
ribed in theprevious se
tion.1.2 MaximizeOverHistory(k,l): �nd the portfolio hk,ℓ that max-imizes wealth for the empiri
al distribution of the data 
ol-le
ted in the history list;2. CombinePortfolios: weighting the experts with the wealth a
hievedso far, and a �prior� probability distribution q(k, ℓ), obtain a port-folio bn to invest in the 
urrent period n.Then, using the newly a
quired data xn,3. update the wealth for ea
h expert and the 
urrent a
tual wealth;4. store xn for use in the next period, dis
retizing it in the histogram
ase.To des
ribe pre
isely the histogram-based strategy BH used in our ex-periments, we need to de�ne the 
ells of the partitions Pℓ determining theexperts. Sin
e typi
al values of the pri
e relatives x(j)
n 
on
entrate around

1, we used the following s
heme. Given ℓ 2 1, . . . , L, in ea
h dimension weuse M = 2 + 2ℓ 
ells. For x 2 R, the index q of its 
ell is 
omputed as
16



follows. De�ne a = 1/2(1 + 2 log10 ℓ) and w = a−1/ℓ. Then
q =





0 if x � a

1 +
j log(x/a)logw

k if x 2 (a, 1]

ℓ + 1 +
j log(ax)+ℓlogwlogw

k if x 2 (1, 1/a]

2ℓ + 1 if x > 1/aThus, the 
ell boundaries are 0, a, aw, . . . , awℓ, 1, a−1w−ℓ, . . . , a−1, ∞, giv-ing a variable-width grid that be
omes �ner 
lose to 1. Then for any x 2 Rd,
Gℓ(x), is the ve
tor of integers {q(j)}j=1,...,d.To implement the kernel-based investment strategy BK des
ribed inSe
tion 3, one needs to 
hoose the kernel fun
tion K. In the experimentsreported here we used the simple �moving-window� kernel K(x) = Ikxk�ckwhere k�k is the eu
lidean norm and tried di�erent 
hoi
es of the 
onstants
ck, all of the form ck = ckd, for di�erent values for c. We denote the kernel-based strategy with the moving-window kernel and 
onstants ck = ckd by
BK(c).To �nd the portfolio that solves the maximization problem in (1) or (2)we use the routines DONLP2 of Spellu

i [23℄.Remark. (
omputational 
ost.) To give an idea of the 
omputational
ost of the proposed algorithms, running the experimental study using theuniform kernel on the full nyse dataset des
ribed below took about 12hours on a Xeon 2.00 GHz based 
omputer. This means that to 
omputethe portfolio of 36 assets for a single period, about 8 se
onds are needed onaverage. Of 
ourse, real-time implementation of these investment strategieswould require storage of dis
retized data and values of performan
e of theexperts used, but the extra 
omputational 
ost of reading these stored datais negligible.Numeri
al resultsWe tested the investment strategies on two di�erent sets of �nan
ial data.One of these is a standard set of New York Sto
k Ex
hange data usedby Cover [10℄, Singer [22℄, Hembold, S
hapire, Singer, and Warmuth [18℄,17



Blum and Kalai [5℄, Borodin, El-Yaniv, and Gogan [6℄, and others. Theother is ex
hange rate data between US$ and eight other 
urren
ies.The nyse data set in
ludes daily pri
es of 36 assets along a 22-year pe-riod (5651 trading days) ending in 1985. This means that d = 36. Be
auseof this large dimensionality, our 
urrent implementation 
annot handle thehistogram strategy. Table 1 summarizes the wealth a
hieved by the kernel-based strategy for three di�erent 
hoi
es of the 
onstant c. In all 
ases, weuse K = 5, L = 10. For the sake of 
omparison, we also indi
ate the wealtha
hieved by the best 
onstantly rebalan
ed portfolio (b
rp). (Note thatthis �anti
ipating� portfolio does not 
orrespond to any valid investmentstrategy sin
e the br
p 
an only be determined in hindsight.) The mostimportant feature is that after the whole 22-year period some versions of BKmultiply their initial wealth by a fa
tor of more than �ve-hundred million.A 
loser inspe
tion of the results reveal that there is a small number ofelementary strategies responsible for this spe
ta
ular growth. This demon-strates how BK is able to exploit e�e
tively hidden dependen
es that aredi�
ult to reveal otherwise. It is interesting to note that in the se
ond halfof the period the growth is signi�
antly faster than in the �rst. This maybe due to the fa
t that in the initial �learning� phase not enough data hasbeen 
olle
ted to dis
over the signi�
ant tenden
ies.We also tested the dis
ussed investment strategies on data obtainedfrom Datastream (a 
ommer
ial database) about the ex
hange rate to US$of several 
urren
ies. In parti
ular, we got daily variations, with respe
tto the US$, from Mar
h 25, 1988 to Mar
h 27, 2003, a total of N = 3914periods, of the eight 
urren
ies listed in Table 2. The table also lists the�nal value of one initial US$ invested in ea
h 
urren
y and the minimum,25th per
entile, median, 75th per
entile and maximum of ea
h series.The a
hieved wealth of the histogram-, and kernel-based strategies arelisted in Table 3. The numbers show the wealth a
hieved, in US dollars,after an initial investment of 1 US$ uniformly divided among all the 
ur-ren
ies in
luded in the data set (i.e., d = 8) and then running the strategiesalong the full period range. In the histogram 
ase we use K = 3, L = 5 whilefor the kernel-based strategy we use the setting previously des
ribed. Thegrowth of wealth for BK(0.1) during the whole period is shown in Figure18



After period b
rp BK(2) BK(1.00) BK(0.5)500 13.07 4.539 4.265 2.7591000 7.324 3.894 5.113 4.4021500 16.03 7.621 9.805 7.9092000 10.21 7.052 7.535 6.9012500 17.48 39.35 40.08 34.873000 18.81 321.7 853.3 505.03500 34.57 2876 2.231e+4 1.641e+44000 55.52 4.7974e+4 8.968e+5 5.531e+54500 106.8 2.5802e+5 5.447e+6 3.116e+65000 125.4 9.035e+5 4.030e+7 2.083e+75500 267.8 5.662e+6 4.725e+08 2.103e+85651 250.6 7.037e+6 5.627e+08 2.633e+8Table 1: Wealth a
hieved by various versions of the kernel-based strategy
BK. In all 
ases one unit is invested in the �rst period uniformly in all 36sto
ks in
luded in our nyse data set. BK(c) is the kernel strategy with
onstant c and b
rp is the best 
onstantly rebalan
ed portfolio.

19



Curren
y Final Min p25 Median p75 MaxSingapoore Dollar 1.138 -0.0247 -0.0012 0.000 0.0013 0.0379Norwegian Crown 0.856 -0.0529 -0.00345 0.000 0.0037 0.049Swiss Fran
 1.007 -0.048 -0.0044 0.000 0.0044 0.054ECU/Euro 0.867 -0.050 -0.0035 0.000 0.0035 0.034Israeli Shekel 0.3323 -0.1156 -0.0017 0.000 0.0015 0.1221Indian Rupee 0.2743 -0.0869 -0.0003 0.000 0.0002 0.0667Canadian Dollar 0.849 -0.017 -0.0018 0.000 0.0018 0.0190British Pound 0.8504 -0.0420 -0.0031 0.000 0.0033 0.0431Table 2: Some des
riptive statisti
s about the ex
hange rate data used.Se
ond 
olumn lists wealth in US$ a
hieved by investing one US$ in the�rst period in the 
orresponding 
urren
y. The rest of the 
olumns showthe minimum, 25th per
entile, median, 75th per
entile and maximum ofea
h series of returns along the full range of periods (1 � n � 3914).4. Even though the results here are not as spe
ta
ular as in the 
ase of thenyse data, after an initial learning period of about 1000 days, the kernel-based portfolio 
learly outperforms the best 
urren
y, the best 
onstantlyrebalan
ed portfolio, and the histogram-based strategy.To relieve the 
omputational burden, we tested a variant of the dis
ussedstrategies whi
h works as follows. The strategy distributes the initial wealthevenly among all �d

2

� pairs of assets. Then for ea
h pair, the histogram (orkernel) based strategy is used independently. The �rst row of Table 4 liststhe wealth a
hieved by this strategy using all �8

2

�
= 28 pairs of 
urren
ies ofthe ex
hange rate data by the di�erent methods. The se
ond row reportsa version in whi
h instead of pairs, all �8

3

�
= 56 triples of 
urren
ies areused. The third row 
orresponds to investing one unit divided among all�

36

2

�
= 630 possible pairs of sto
ks in the nyse data set. We see that, eventhough no theoreti
al guarantee 
an be given for the universality of thesevariants, the numeri
al performan
e of these simpli�ed methods does notdeteriorate signi�
antly (it even improves in the 
ase of the nyse data).In Table 5 we 
ompare the wealth a
hieved by the strategies dis
ussed20



After period b
rp BH BK(0.3) BK(0.1) BK(0.05)500 1.078 1.112 1.060 1.145 1.0851000 1.227 1.445 1.788 1.971 1.5321500 1.262 3.234 5.586 8.698 5.2192000 1.425 6.553 12.81 23.01 13.162500 1.273 9.009 15.21 32.99 18.533000 1.178 11.16 22.22 51.91 28.913500 1.152 20.04 43.64 111.8 60.893914 1.138 35.47 83.52 229.7 124.28Table 3: Wealth a
hieved by various investment strategies for the 
urren
yex
hange data. In all 
ases one US$ is invested in the �rst period uniformlyin all 8 
urren
ies des
ribed in Table 2. b
rp is the 
onstant rebalan
edportfolio, BH is the histogram-besed strategy, and BK(c) is the kernel strat-egy.
BH BK(0.01) BK(0.05) BK(0.5)All ex
hr pairs 14.25 5.393 12.65 0.8832All ex
hr triples 21.59 7.095 26.77 1.270All nyse pairs � � 4.31e8 1.285e10Table 4: Wealth a
hieved by investing one unit divided among all thepossible pairs or triples for the ex
hange rate (ex
hr) and nyse data.
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Figure 1: Wealth a
hieved along N = 3925 daily periods by investing oneUS$ in several 
urren
ies, and by using the kernel-based strategy 
omputedwith d = 8 
urren
ies, like in 
olumn �ve of Table 3. Horizontal axis istime period number, verti
al is the wealth a
hieved, in logarithmi
 s
ale.22



here to other methods found in the literature. We report the wealtha
hieved by di�erent strategies for the pairs of nyse sto
ks used by Cover[10℄ (to test his universal portfolio) and by Singer [22℄ (for his �swit
hingportfolios�). As a referen
e, we also list the wealth of some other strate-gies only 
omputable with hindsight. BH and BK 
learly outperform bothCover's universal portfolio and Singer's swit
hing portfolios. It is also in-teresting to note that the presen
e of the sto
k Kin Ark makes the wealthof these strategies explode. This is interesting, sin
e the overall growth ofKin Ark in the reported period is quite modest. The reason is that some-how the variations of the pri
e relatives of this asset turn out to be wellpredi
table by at least one expert and that su�
es to produ
e this explo-sive growth. Indeed, the presen
e of this single sto
k is largely responsiblefor the wealth reported in Table 1. Removing this single sto
k from theportfolio, the a
hieved wealth of BK(1.0) redu
es to a mu
h more modestvalue of 753.76 (whi
h still 
orresponds to an annual rate of in
rease ofabout 135%).Finally, we brie�y present some results on the performan
e of thesestrategies in the presen
e of transa
tion 
osts. It is not straightforwardto adapt our methods in an optimal way when transa
tions 
osts haveto be paid. More pre
isely, assume that a �xed per
entage 
ommission
r 2 (0, 1) has to be payed at ea
h transa
tion. The results reported hereare very likely improvable and 
orrespond to the simplisti
 method in whi
hea
h expert is weighed by the wealth a
hieved in presen
e of transa
tion
osts, and use the resulting portfolio. Namely, let Sr

n(H(k,ℓ)) be the wealtha
hieved by expert (k, ℓ) after period n. (This may be 
omputed using anoptimal rebalan
ing strategy, see Blum and Kalai [5℄). Then, the portfoliois 
al
ulated by
b(xn−1

1 ) =

∑
k,ℓ qklS

r
n−1(H

(k,ℓ))h(k,ℓ)(xn−1
1 )∑

k,ℓ qklS
r
n−1(H

(k,ℓ))
,and the wealth a
hieved by the strategy B be
omes

Sr
n(B) = S0

n∏

i=1

hbi , xiiαr(bi−1, bi)23



Sto
ks Best Exp. [k, ℓ]Iroquois Best asset 8.92 BH 2.3e+10 1.395e+11 [1,1℄Kin Ark b
rp 73.70 BK 2.109e+04 1.087e+06 [1,1℄Ora
le 6.85e+53 4.038e+10 9.014e+11 [2,2℄Cover up 39.97 2.187e+10 9.014e+11 [2,1℄Singer sap 143.7 7.401e+10 9.014e+11 [2,5℄Com. Met. Best asset 52.02 BH 162.5 327.8 [2,1℄Mei. Corp b
rp 103.0 BK 96.9 433.3 [1,2℄Ora
le 2.12e+35 775.1 4749. [2,5℄Cover up 74.08 373.8 4613 [4,1℄Singer sap 107.7 682.3 4613 [4,5℄Com. Met. Best asset 52.02 BH 1.331e+10 8.544e+10 [1,1℄Kin Ark b
rp 144.0 BK 1.52e+07 7.847e+08 [1,1℄Ora
le 1.84e+49 1.111e+11 1.411e+12 [3,3℄Cover up 80.54 5.395e+10 1.411e+12 [3,℄1Singer sap 206.7 2.551e+11 2.065e+12 [2,8℄IBM Best asset 13.36 BH 63.87 112.2 [1,5℄Co
a-Cola b
rp 15.02 BK 18.92 86.1 [1,1℄Ora
le 1.08e+15 47.6 194.6 [1,6℄Cover up 14.24 46.46 194.6 [1,6℄Singer sap 15.05 18.11 60.56 [3,10℄Table 5: Wealth a
hieved by di�erent strategies by investing in the pairs ofnyse sto
ks used in Cover [10℄. In the se
ond 
olumn we show the wealtha
hieved by the best sto
k of the two involved, by the best 
onstantlyrebalan
ed portfolio, by an ora
le (de�ned as the best possible strategywhi
h invests all the 
apital in the best sto
k ea
h day), and the resultsreported in the literature for Cover's universal portfolio (up) and Singer'sswit
hing adaptive portfolio (sap). The third 
olumn lists our results forthe histogram (BH) and kernel (BK) portfolios. In all 
ases we take K =

5, L = 10, and c = 0.01, 0.05, 0.1, 0.5 for BK. The last 
olumn lists thewealth and the index of the best expert among the KL + 1 
ompetingexperts. 24



where αr(b, b 0) denotes the wealth loss ratio due to the transa
tion 
ost cwhen rebalan
ing the portfolio b to b 0.We applied this simple approa
h to the nyse data for several values ofthe transa
tion 
ost r. It is shown in Figure 2 that the wealth redu
tion isimportant but still gives a good result for reasonable values of the 
ost r.
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Figure 2: Wealth a
hieved by investing one unit uniformly in the 36 nysesto
ks and using the kernel strategy (with 
onstant 1.0) for several valuesof the transa
tion 
osts r = 0, 0.001, 0.002, . . . , 0.012.
5 ProofsThe proof of Theorem 1 uses the following three auxiliary results. The �rstis known as Breiman's generalized ergodi
 theorem [7℄, see also Algoet [2℄.25



Lemma 1 (breiman [7℄). Let Z = {Zi}
∞
−∞ be a stationary and ergodi
pro
ess. For ea
h positive integer i, let T i denote the operator thatshifts any sequen
e {. . . , z−1, z0, z1, . . .} by i digits to the left. Let f1, f2, . . .be a sequen
e of real-valued fun
tions su
h that limn→∞ fn(Z) = f(Z)almost surely for some fun
tion f. Assume that E supn |fn(Z)| < ∞.Then lim

n→∞
1

n

n∑

i=1

fi(T
iZ) = E f(Z) almost surely.The next two lemmas are due to Algoet and Cover [3, Theorems 3 and4℄.Lemma 2 (algoet and 
over [3℄). Let Qn2N[{∞} be a family of reg-ular probability distributions over the set Rd

+ of all market ve
torssu
h that E {| log U(j)
n |} < ∞ for any 
oordinate of a random marketve
tor Un = (U(1)

n , . . . , U(d)
n ) distributed a

ording to Qn. In addition,let B�(Qn) be the set of all log-optimal portfolios with respe
t to Qn,that is, the set of all portfolios b that attain maxb2∆d

E {log hb , Uni}.Consider an arbitrary sequen
e bn 2 B�(Qn). If
Qn → Q∞ weakly as n → ∞then, for Q∞-almost all u,lim

n→∞ hbn , ui → hb� , uiwhere the right-hand side is 
onstant as b� ranges over B�(Q∞).Lemma 3 (algoet and 
over [3℄). Let X be a random market ve
torde�ned on a probability spa
e (Ω,F ,P) satisfying E {| log X(j)|} < ∞. IfFk is an in
reasing sequen
e of sub-σ-�elds of F withFk ր F∞ � F ,then E {max
b

E [log hb , Xi |Fk]
}

ր E {max
b

E [log hb , Xi |F∞ ]
}as k → ∞ where the maximum on the left-hand side is taken over allFk-measurable fun
tions b and the maximum on the right-hand sideis taken over all F∞-measurable fun
tions b.26



Proof of Theorem 1. The proof is based on te
hniques used in relatedpredi
tion problems, see Györ�, Lugosi, and Morvai [16℄, Györ� and Lugosi[15℄, Györ� and S
häfer [17℄. We need to prove thatlim inf
n→∞ Wn(B) = lim inf

n→∞
1

n
log Sn(B) � W� almost surely.Without loss of generality we may assume S0 = 1, so that

Wn(B) =
1

n
logSn(B)

=
1

n
log0�∑

k,ℓ

qk,ℓSn(H(k,ℓ))

1A� 1

n
log sup

k,ℓ

qk,ℓSn(H(k,ℓ))

!
=

1

n
sup
k,ℓ

�logqk,ℓ + log Sn(H(k,ℓ))
�

= sup
k,ℓ

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!
.Thus lim inf

n→∞ Wn(B) � lim inf
n→∞ sup

k,ℓ

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!� sup
k,ℓ

lim inf
n→∞

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!
= sup

k,ℓ

lim inf
n→∞ Wn(H(k,ℓ)). (3)The simple argument above shows that the asymptoti
 rate of growth ofthe strategy B is at least as large as the supremum of the rates of growthof all elementary strategies H(k,ℓ). Thus, to estimate lim infn→∞ Wn(B), itsu�
es to investigate the performan
e of expert H(k,ℓ) on the stationaryand ergodi
 market sequen
e X0, X−1, X−2, . . .. First let the integers k, ℓand the ve
tor s = s−1

−k 2 Rdk
+ be �xed. Let P(k,ℓ)

j,s denote the (random)measure 
on
entrated on {Xi : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ} de�nedby P(k,ℓ)

j,s (A) =

∑
i:1−j+k�i�0,kXi−1

i−k
−sk�c/ℓIA(Xi)

|{i : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ}|

, A � Rd
+27



where IA denotes the indi
ator fun
tion of the set A. If the above set of Xi'sis empty, then let P(k,ℓ)
j,s = δ(1,...,1) be the probability measure 
on
entratedon the ve
tor (1, . . . , 1). In other words, P(k,ℓ)

j,s (A) is the relative frequen
yof the the ve
tors among X1−j+k, . . . , X0 whi
h fall in the set A.Observe that for all s, with probability one,P(k,ℓ)
j,s →

{ PX0 |kX−1
−k

−sk�c/ℓ if P(kX−1
−k − sk � c/ℓ) > 0,

δ(1,...,1) if P(kX−1
−k − sk � c/ℓ) = 0

(4)weakly as j → ∞ where PX0|kX−1
−k

−sk�c/ℓ denotes the distribution of theve
tor X0 
onditioned on the event kX−1
−k − sk � c/ℓ. To see this, let f bea bounded 
ontinuous fun
tion de�ned on Rd

+. Then the ergodi
 theoremimplies that
∫

f(x)P(k,ℓ)
j,s (dx) =

1
|1−j+k|

∑
i:1−j+k�i�0,kXi−1

i−k
−sk�c/ℓ f(Xi)

1
|1−j+k|

|{i : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ}|

→
E {f(X0)I{kX−1

−k
−sk�c/ℓ}}P{kX−1

−k − sk � c/ℓ}

= E {
f(X0)

���kX−1
−k − sk � c/ℓ

}

=

∫
f(x)PX0 |kX−1

−k
−sk�c/ℓ(dx) almost surely, as j → ∞if P(kX−1

−k − sk � c/ℓ) > 0. On the other hand, if P(kX−1
−k − sk � c/ℓ) = 0,then with probability one P(k,ℓ)

j,s is 
on
entrated on (1, . . . , 1) for all j, and
∫

f(x)P(k,ℓ)
j,s (dx) = f(1, . . . , 1) .Denote the limit distribution of P(k,ℓ)

j,s by P�(k,ℓ)
s .Re
all that by de�nition, b(k,ℓ)(X−1

1−j, s) is a log-optimal portfolio withrespe
t to the probability measure P(k,ℓ)
j,s . Let b�

k,ℓ(s) denote a log-optimalportfolio with respe
t to the limit distribution P�(k,ℓ)
s . Then, using Lemma2, we infer from (4) that, as j tends to in�nity, we have the almost sure
onvergen
e lim

j→∞

D
b(k,ℓ)(X−1

1−j, s) , x0

E
= hb�

k,ℓ(s) , x0i28



for P�(k,ℓ)
s -almost all x0 and hen
e for PX0

-almost all x0. Sin
e s was arbi-trary, we obtainlim
j→∞

D
b(k,ℓ)(X−1

1−j, X
−1
−k) , x0

E
=
D
b�

k,ℓ(X
−1
−k) , x0

E almost surely. (5)Next we apply Lemma 1 for the fun
tion
fi(x

∞
−∞) = log Dh(k,ℓ)(x−1

1−i) , x0

E
= log Db(k,ℓ)(x−1

1−i, x
−1
−k) , x0

Ede�ned on x∞
−∞ = (. . . , x−1, x0, x1, . . .). Note that
fi(X

∞
−∞) =

���log Dh(k,ℓ)(X−1
1−i) , X0

E��� � d∑

j=1

���logX
(j)
0

��� ,whi
h has �nite expe
tation, and
fi(X

∞
−∞) →

D
b�

k,ℓ(X
−1
−k) , X0

E almost surely as i → ∞by (5). As n → ∞, Lemma 1 yields
Wn(H(k,ℓ)) =

1

n

n∑

i=1

fi(T
iX∞

−∞)

=
1

n

n∑

i=1

log Dh(k,ℓ)(Xi−1
1 ) , Xi

E
→ E {log Db�

k,ℓ(X
−1
−k) , X0

E}def
= ǫk,ℓ almost surely.Therefore, by (3) we havelim inf

n→∞ Wn(B) � sup
k,ℓ

ǫk,ℓ � sup
k

lim inf
ℓ

ǫk,ℓ almost surelyand it su�
es to show that the right-hand side is at least W�.To this end, de�ne, for Borel sets A, B � Rd
+,

mA(z) = P{X0 2 A|X−1
−k = z}29



and
µk(B) = P{X−1

−k 2 B}.Then for any s 2 support(µk), and for all A,P�(k,ℓ)
s (A) = P{

X0 2 A
���kX−1

−k − sk � c/ℓ
}

=
P{X0 2 A, kX−1

−k − sk � c/ℓ}P{kX−1
−k − sk � c/ℓ}

=
1

µk(Ss,c/ℓ)

∫

Ss,c/ℓ

mA(z)µk(dz)

→ mA(s) = P{X0 2 A|X−1
−k = s}as ℓ → ∞ and for µk-almost all s by the Lebesgue density theorem (see[14, Lemma 24.5℄), and thereforeP�(k,ℓ)

X−1
−k

(A) → P{X0 2 A|X−1
−k}as ℓ → ∞ for all A. Thus, using Lemma 2 again, we havelim inf

ℓ
ǫk,ℓ = lim

ℓ
ǫk,ℓ

= E {log Db�
k(X

−1
−k) , X0

E}(where b�
k(�) is the log-optimum portfolio with respe
tto the 
onditional probability P{X0 2 A|X−1

−k})
= E {E { log Db�

k(X
−1
−k) , X0

E���X−1
−k

}}

= E {max
b(�) E { log Db(X−1

−k) , X0

E���X−1
−k

}}def
= ǫ�k .To �nish the proof we appeal to the sub-martingale 
onvergen
e theorem.First note that the sequen
e

Yk
def
= E { log Db�

k(X
−1
−k) , X0

E���X−1
−k

}
= max

b(�) E { log Db(X−1
−k) , X0

E���X−1
−k

}

30



of random variables forms a sub-martingale, that is, E {
Yk+1|X

−1
−k

} � Yk.To see this, note thatE {
Yk+1|X

−1
−k

}
= E { E { log Db�

k+1(X
−1
−k−1) , X0

E���X−1
−k−1

}����X−1
−k

}� E { E { log Db�
k(X

−1
−k) , X0

E���X−1
−k−1

}����X−1
−k

}

= E { log Db�
k(X

−1
−k) , X0

E���X−1
−k−1

}

= Yk .This sequen
e is bounded bymax
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}whi
h has a �nite expe
tation. The sub-martingale 
onvergen
e theorem(see, e.g., Stout [25℄) implies that this sub-martingale is 
onvergent almostsurely, and supk ǫ�k is �nite. In parti
ular, by the submartingale property,
ǫ�k is a bounded in
reasing sequen
e, so thatsup

k

ǫ�k = lim
k→∞

ǫ�k .Applying Lemma 3 with the σ-algebras
σ
�
X−1

−k

�
ր σ

�
X−1

−∞
�yields sup

k

ǫ�k = lim
k→∞

E {max
b(�) E { log Db(X−1

−k) , X0

E���X−1
−k

}}

= E {max
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}}

= W�and the proof of the theorem is �nished.Sket
h of proof of Theorem 2. The proof parallels that of Theorem 1so we only indi
ate the di�eren
es. 31



The de�nition of the random measure P(k,ℓ)
j,s is now 
hanged toP(k,ℓ)

j,s (A) =

∑
i:1−j+k�i�0 w

(k,ℓ)
i IA(Xi)

∑
i:1−j+k�i�0 w

(k,ℓ)
i

, A � Rd
+whose weak limit distribution, as j → ∞, be
omesP�(k,ℓ)

s (A) =
E {IX02AKk

�
ℓ(X−1

−k − s)
�}E {

Kk

�
ℓ(X−1

−k − s)
�}

=

∫
mA(z)Kk (ℓ(z − s))µk(dz)∫

Kk (ℓ(z − s))µk(dz)whi
h 
onverges, as ℓ → ∞, to mA(s) for µk-almost all s by another versionof Lebesgue density theorem, see Lemma 24.8 in Györ�, Kohler, Krzy»ak,and Walk [14℄. The rest of the proof is identi
al to that of Theorem 1.A
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