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strategies are analyzed both theoretially and empirially. The theo-retial results show that the asymptoti rate of growth mathes theoptimal one that one ould ahieve with a full knowledge of the sta-tistial properties of the underlying proess generating the market,under the only assumption that the market is stationary and ergodi.The empirial results show that the performane of the proposed in-vestment strategies measured on past nyse and urreny exhangedata is solid, and sometimes even spetaular.Key words and phrases: sequential investment, universal portfolios, ker-nel estimation.
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1 IntrodutionThe purpose of this paper is to investigate sequential investment strategiesfor �nanial markets. Investment strategies are allowed to use informationolleted from the past of the market and determine, at the beginning ofa trading period, a portfolio, that is, a way to distribute their urrentapital among the available assets. The goal of the investor is to maximizehis wealth on the long run without knowing the underlying distributiongenerating the stok pries. Sine aurate statistial modeling of stokmarket behavior has been known as a notoriously di�ult problem, wetake an extreme point of view and work with minimal assumptions on thedistribution of the time series. In fat, the only assumption we use in ourmathematial analysis is that the daily prie relatives form a stationaryand ergodi proess. Under this assumption the asymptoti rate of growthhas a well-de�ned maximum whih an be ahieved in full knowledge ofthe distribution of the entire proess, see Algoet and Cover [3℄.Universal proedures ahieving the same asymptoti growth rate with-out any previous knowledge have been known to exist, see Algoet [1℄, Györ�and Shäfer [17℄. In this paper new universal strategies are proposed whihnot only guarantee an optimal asymptoti growth rate of apital for allstationary and ergodi markets, but also have a good �nite-horizon per-formane in pratie. This is demonstrated on an experimental study inwhih the performane of the proposed methods is measured on di�erentdata sets, inluding past New York Stok Exhange (nyse) data spanninga twenty-two-year period with thirty six stoks inluded, and urreny ex-hange values of eight urrenies over a �fteen-year period.The experimental results demonstrate that the proposed methods areable to �nd, and e�etively exploit, hidden ompliated dependenes ofasset pries on the past evolution of the market.To make the analysis feasible, some simplifying assumptions are usedthat need to be taken into aount. First of all, we assume that assets arearbitrarily divisible and all assets are available in unbounded quantities atthe urrent prie at any given trading period. We also ignore transationosts in the mathematial analysis, though some of the experimental results3



are also presented with transation osts present. Another key assumptionis that the behavior of the market is not a�eted by the ations of the in-vestor using the strategy under investigation. This assumption is realistiwhen the investor handles small amounts of apital ompared to the totaltrading volume on the market. Under this hypothesis, testing the methodson past stok-market data is meaningful. On the other hand, the spetau-lar growth of apital demonstrated by some of the proposed methods (e.g.,by a fator of more than 108 during twenty two years on the New YorkStok Exhange) should be interpreted with are, sine suh an explosivegrowth in real markets would inevitably be aompanied by some reationof the market whose e�et is not taken into aount neither in the theoreti-al results, nor in the experimental �gures based on past prie �utuations.In spite of these simpli�ations, we feel that our numerial results providea strong empirial evidene for the ine�ieny of the stok markets. Thismay partially be explained by the fat that the dependene strutures ofthe markets revealed by the proposed investment strategies are quite om-plex and even though all information we use is publily available, the waythis information an be exploited remains hidden from most traders.The rest of the paper is organized as follows. In Setion 2 the mathemat-ial model is desribed, and related results are surveyed brie�y. In Setion3 a family of kernel-based nonparametri sequential investment strategiesis introdued and its main onsisteny properties are stated. Numerialresults based on various data sets are desribed in Setion 4. The proof ofthe main theoretial result (Theorems 1 and 2) is given in Setion 5.2 Setup, mathematial modelThe model of stok market investigated in this paper is the one onsidered,among others, by Breiman [8℄, Algoet and Cover [3℄, Cover [10℄. Considera market of d assets. A market vetor x = (x(1), . . . x(d)) 2 Rd
+ is a vetorof d nonnegative numbers representing prie relatives for a given tradingperiod. That is, the j-th omponent x(j) � 0 of x expresses the ratio of thelosing and opening pries of asset j. In other words, x(j) is the fator bywhih apital invested in the j-th asset grows during the trading period.4



The investor is allowed to diversify his apital at the beginning of eahtrading period aording to a portfolio vetor b = (b(1), . . . b(d)). The j-thomponent b(j) of b denotes the proportion of the investor's apital investedin asset j. Throughout the paper we assume that the portfolio vetor b hasnonnegative omponents with ∑d

j=1 b(j) = 1. The fat that ∑d

j=1 b(j) = 1means that the investment strategy is self �naning and onsumption ofapital is exluded. The non-negativity of the omponents of b meansthat short selling and buying stoks on margin are not permitted. Let S0denote the investor's initial apital. Then at the end of the trading periodthe investor's wealth beomes
S1 = S0

d∑

j=1

b(j)x(j) = S0 hb , xi ,where h� , �i denotes inner produt.The evolution of the market in time is represented by a sequene ofmarket vetors x1, x2, . . . 2 Rd
+, where the j-th omponent x

(j)
i of xi denotesthe amount obtained after investing a unit apital in the j-th asset on the

i-th trading period. For j � i we abbreviate by xi
j the array of marketvetors (xj, . . . , xi) and denote by ∆d the simplex of all vetors b 2 Rd

+with nonnegative omponents summing up to one. An investment strategyis a sequene B of funtions
bi :

�Rd
+

�i−1 → ∆d , i = 1, 2, . . .so that bi(x
i−1
1 ) denotes the portfolio vetor hosen by the investor on the

i-th trading period, upon observing the past behavior of the market. Wewrite b(xi−1
1 ) = bi(x

i−1
1 ) to ease the notation.Starting with an initial wealth S0, after n trading periods, the invest-ment strategy B ahieves the wealth

Sn = S0

n∏

i=1

D
b(xi−1

1 ) , xi

E
= S0e

∑n
i=1 loghb(xi−1

1
),xii = S0e

nWn(B).where Wn(B) denotes the average growth rate
Wn(B) =

1

n

n∑

i=1

log Db(xi−1
1 ) , xi

E
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Obviously, maximization of Sn = Sn(B) and maximization of Wn(B) areequivalent.In modeling the behavior of the evolution of the market, two main ap-proahes have been onsidered in the theory of sequential investment. Oneof them allows the market sequene x1, x2, . . . to take ompletely arbitraryvalues and no stohasti model is imposed on the mehanism generatingthe prie relatives, see, for example, Cover [10℄, Cover and Ordentlih [11℄,Singer [22℄, Hembold, Shapire, Singer, and Warmuth [18℄, Ordentlih andCover [21℄, Vovk and Watkins [26℄, Blum and Kalai [5℄, Borodin, El-Yaniv,and Gogan [6℄, Cesa-Bianhi and Lugosi [9℄, Cross and Barron [12℄, Stoltzand Lugosi [24℄. In this approah the ahieved wealth is ompared withthat of the best in a lass of referene strategies. For example, Cover [10℄onsiders the lass of all onstantly rebalaned portfolios (rp) de�ned bystrategies B for whih bi(x
i−1
1 ) equals a �xed portfolio vetor independentlyof i and the past xi−1

1 . Cover showed that there exist investment strategies
B (so-alled universal portfolios) whih perform almost as well as the bestonstantly rebalaned portfolio in the sense that

Wn(B) � max
C2C Wn(C) −

 
d − 1

2n
logn + O

 
1

n

!!for all possible market sequenes xn
1 , where C denotes the lass of all on-stantly rebalaned portfolios. This result has been extended in variousways in the above-mentioned referenes.The advantage of this �worst-ase� approah is that it avoids imposingstatistial models on the stok market and the results hold for all possiblesequenes xn

1 . In this sense this approah is extremely robust. However, itis di�ult to ontrol the behavior of the best strategy in the referene lass.For example, onstantly rebalaned portfolios are known to be asymptot-ially optimal if the market vetors x1, . . . , xn are realizations of an inde-pendent, identially distributed sequene of random vetors (see below) butare insu�ient if the market vetors of di�erent trading periods have a sta-tistial dependene, whih seems to be the ase in real-world markets. Forthis reason, larger referene lasses have also been onsidered (see, e.g., theside-information model of Cover and Ordentlih [11℄, the swithing portfo-6



lios of Singer [22℄ and also Cross and Barron [12℄) but similar limitationsstill hold.Another possibility is to assume that the market vetors are realizationsof a random proess, and desribe a statistial model. The advantage ofthis view more lassial view is that, for eah proess, an optimal strat-egy may be determined (in a sense spei�ed below), whih depends on theunknown distribution of the proess, and use the past market sequene toestimate the statistial features neessary to approximate the optimal strat-egy. However, one has to proeed with are sine ompliated dependenesin time and aross stoks make statistial modeling extremely di�ult.In this paper we adopt a ompromise between the worst-ase and thestatistial approahes. Even though we assume that the market sequene isa realization of a random proess, we do not assume any parametri stru-ture on the distribution or on the time dependenes. Our view is ompletelynonparametri in that the only assumption we use is that the market is sta-tionary and ergodi, allowing arbitrarily omplex distributions. The mainmessage of this paper is that there exist ompletely nonparametri invest-ment strategies that e�etively �nd these hidden omplex dependenes inthe past data and are able to use this information to produe a rapid growthof the apital.More preisely, assume that x1, x2, . . . are realizations of the randomvetors X1, X2, . . . drawn from the vetor-valued stationary and ergodiproess {Xn}∞−∞ . (Note that by Kolmogorov's theorem any stationary andergodi proess {Xn}∞1 an be extended to a bi-in�nite stationary proesson some probability spae (Ω,F ,P), suh that ergodiity holds for both
n → ∞ and n → −∞). The sequential investment problem, under theseonditions, have been onsidered by, e.g., Breiman [8℄, Algoet and Cover[3℄, Algoet [1, 2℄, Walk and Yakowitz [27℄, Györ� and Shäfer [17℄. Thefundamental limits, determined in [3℄, [1, 2℄, reveal that the so-alled log-optimum portfolio B� = {b�(�)} is the best possible hoie. More preisely,on trading period n let b�(�) be suh thatE { log Db�(Xn−1

1 ) , Xn

E���Xn−1
1

}
= max

b(�) E { log Db(Xn−1
1 ) , Xn

E���Xn−1
1

}
.If S�n = Sn(B�) denotes the apital ahieved by a log-optimum portfolio7



strategy B�, after n trading periods, then for any other investment strategy
B with apital Sn = Sn(B) and for any stationary and ergodi proess
{Xn}∞−∞ , lim sup

n→∞

1

n
log Sn

S�n � 0 almost surelyand lim
n→∞

1

n
log S�n = W� almost surely,where

W� = E {max
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}}is the maximal possible growth rate of any investment strategy. (Notethat for i.i.d. markets W� = maxb E {log hb , X0i} whih shows that in thisase the log-optimal portfolio is a onstantly rebalaned portfolio, see alsoBreiman [8℄, Kelly [19℄, Latané [20℄, Finkelstein and Whitley [13℄, andBarron and Cover [4℄.)Thus, (almost surely) no investment strategy an have a faster rateof growth than a log-optimal portfolio. Of ourse, to determine a log-optimal portfolio, full knowledge of the (in�nite-dimensional) distributionof the proess is required. Strategies ahieving the same rate of growthwithout knowing the distribution are alled universal in this paper. Morepreisely, an investment strategy B is alled universal with respet to alass of stationary and ergodi proesses {Xn}∞−∞, if for eah proess in thelass, lim
n→∞

1

n
log Sn(B) = W� almost surely.The surprising fat that there exists a strategy, universal with respet tothe lass of all stationary and ergodi proesses was proved by Algoet [1℄.Algoet's onstrution is, however, quite omplex and, despite of its theoret-ial importane, has little pratial value. Algoet also introdued a simplersheme and skethed the proof of its universality, whih was ompleted byGyör� and Shäfer [17℄.Next we desribe Györ� and Shäfer's version of Algoet's sheme asthe investment strategies de�ned in this paper are generalizations of this8



method. We all this sheme a histogram-based investment strategy anddenote it by BH.
BH is onstruted as follows. We �rst de�ne an in�nite array of ele-mentary strategies (the so-alled experts) H(k,ℓ) = {h(k,ℓ)(�)}, indexed bythe positive integers k, ℓ = 1, 2, . . .. Eah expert H(k,ℓ) is determined by aperiod length k and by a partition Pℓ = {Aℓ,j}, j = 1, 2, . . . , mℓ of Rd

+ into
mℓ disjoint sets. To determine its portfolio on the nth trading period, ex-pert H(k,ℓ) looks at the market vetors xn−k, . . . , xn−1 of the last k periods,disretizes this kd-dimensional vetor by means of the partition Pℓ, anddetermines the portfolio vetor whih is optimal for those past trading pe-riods whose preeding k trading periods have idential disretized marketvetors to the present one. Formally, let Gℓ be the disretization funtionorresponding to the partition Pℓ, that is,

Gℓ(x) = j, if x 2 Aℓ,j .With some abuse of notation, for any n and xn
1 2 Rdn, we write Gℓ(x

n
1) forthe sequene Gℓ(x1), . . . , Gℓ(xn). Then de�ne the expert H(k,ℓ) by writing,for eah n > k + 1,

h(k,ℓ)(xn−1
1 ) = argmax

b2∆d

∏

{k<i<n:Gℓ(x
i−1
i−k

)=Gℓ(x
n−1
n−k

)}

hb , xii , (1)if the produt is non-void, and uniform b0 = (1/d, . . . , 1/d) otherwise.That is, h(k,ℓ)
n disretizes the sequene xn−1

1 aording to the partition Pℓ,and browses through all past appearanes of the last seen disretized string
Gℓ(x

n−1
n−k) of length k. Then it designs a �xed portfolio vetor optimizingthe return for the trading periods following eah ourrene of this string.The histogram-based strategy BH forms a �mixture� of all experts H(k,ℓ)using a probability distribution {qk,ℓ} on the set of all pairs (k, ℓ) of positiveintegers suh that for all k, ℓ, qk,ℓ > 0. The strategy BH simply weighs theexperts H(k,ℓ) aording to their past performanes and {qk,ℓ} suh that afterthe nth trading period, the investor's apital beomes

Sn(BH) =
∑

k,ℓ

qk,ℓSn(H(k,ℓ)),9



where Sn(H(k,ℓ)) is the apital aumulated after n periods when using theportfolio strategy H(k,ℓ) with initial apital S0. This may easily be ahievedby distributing the initial apital S0 among all experts suh that expert
H(k,ℓ) trades with initial apital qk,ℓS0. It is shown in [17℄ that the strategy
BH is universal with respet to the lass of all ergodi proesses suh thatE {| log X(j)|} < ∞, for all j = 1, 2, . . . , d under the following two onditionson the partitions used in the disretization:(a) the sequene of partitions is nested, that is, any ell of Pℓ+1 is a subsetof a ell of Pℓ, ℓ = 1, 2, . . .;(b) if diam(A) = supx,y2Akx − yk denotes the diameter of a set, then forany sphere S � Rd entered at the origin,lim

ℓ→∞
max

j:Aℓ,j\S6=; diam(Aℓ,j) = 0 .Remark. In the above-mentioned result, the only ondition on the marketproess is that E {| log X(j)|} < ∞. However, this ondition is not very re-stritive for two reasons. First, most �real� markets obviously satisfy suha ondition. Seond, the result may be generalized so that it inludes allergodi market proesses by using a slightly more ompliated sheme sug-gested by Algoet [1℄. This sheme uses a three-dimensional array h(k,ℓ,m)of experts de�ned by
h(k,ℓ,m) = (1 − λm)h(k,ℓ) + λmb0 ,where λm 2 (0, 1) is a sequene of numbers onverging to zero and b0 isthe uniform portfolio (1/d, . . . , 1/d).3 Kernel-based investment strategiesIn this setion we introdue a lass of kernel-based investment strategiesand prove their universality. Kernel-based rules allow a more �exible way ofextrating information from the history of the market. The family of meth-ods introdued here is similar, in spirit, to the histogram-based strategy10



desribed in the previous setion. The main di�erene is that the elemen-tary strategies used by the strategy replae the rigid disretization of thepast few market vetors by a more �exible �moving-window� rule. By ap-propriate weighing by a kernel funtion a whole rih family of strategies isobtained. The main theoretial result of this setion is the universality ofthese strategies under general assumptions. The numerial results shownin Setion 4 indiate the pratial superiority of kernel-based methods.To simplify notation we start with the simplest �moving-window� ver-sion, orresponding to a uniform kernel funtion, and treat the general asebrie�y later.The kernel-based strategy BK is onstruted similarly to the histogram-based portfolio BH desribed in the previous setion. Just like before, westart by de�ning an in�nite array of experts H(k,ℓ) = {h(k,ℓ)(�)}, where k, ℓare positive integers. To de�ne H(k,ℓ), let c > 0 be a onstant possiblydepending on k and d. For �xed positive integers k, ℓ and for eah vetor
s = s−1

−k of dimension kd de�ne the portfolio vetor, for n > k + 1,
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∏

{k<i<n:kxi−1
i−k

−sk�c/ℓ}

hb , xii ,if the produt is non-void, and b0 = (1/d, . . . , 1/d) otherwise. If the prod-ut is non-void then we may re-write this de�nition as
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∑
{k<i<n:kXi−1

i−k
−sk�c/ℓ} log hb , xii���{k < i < n : kxi−1

i−k − sk � c/ℓ
}��� .Finally, we de�ne the expert h(k,ℓ) by

h(k,ℓ)(xn−1
1 ) = b(k,ℓ)(xn−1

1 , xn−1
n−k), n = 1, 2, . . . (2)That is, h(k,ℓ)

n disretizes the sequene xn−1
1 , and browses through all pastapproximate appearanes of the last seen vetor xn−1

n−k. Then it designsa �xed portfolio vetor aording to the returns on the periods followingthese approximate appearanes.These experts are mixed the same way as in the ase of the histogram-based strategy. That is, let {qk,ℓ} be a probability distribution over the set11



of all pairs (k, ℓ) of positive integers suh that for all k, ℓ, qk,ℓ > 0. Thestrategy BK weighs the experts H(k,ℓ) aording to their past performanesand {qk,ℓ} by
b(xn−1

1 ) =

∑
k,ℓ qklSn−1(H

(k,ℓ))h(k,ℓ)(xn−1
1 )∑

k,ℓ qklSn−1(H
(k,ℓ))

,where Sn(H(k,ℓ)) is the apital aumulated by the elementary strategy
H(k,ℓ) after n periods when starting with an initial apital S0. Thus, afterperiod n, the investor's apital beomes

Sn(BK) =
∑

k,ℓ

qk,ℓSn(H(k,ℓ)) .The main result of this setion, whose proof is given in Setion 5 below,states the universality of the sheme de�ned above:Theorem 1 The portfolio sheme BK is universal with respet to thelass of all ergodi proesses suh that E {| log X(j)|} < ∞, for j = 1, 2, . . . d.Remark. The assumption of the �niteness of the E {| log X(j)|} may beweakened similarly as in the ase of the histogram-based strategy desribedin the previous setion.Remark. (parameters.) For the universality of the method, it su�es toassume that the initial weights qk,ℓ are stritly positive. However, in pra-tie, for good �nite-time behavior, the role of these weights is important.For good pratial performane, qk,ℓ, as well as other parameters suh asthe onstant c have to be �ne tuned. Some possible hoies are given inSetion 4.Remark. (transation osts.) As mentioned in the introdution, amain simplifying (and unrealisti) assumption in our analysis is that trans-ation osts are ignored. It follows from a result of Blum and Kalai [5℄ thatif the market proess X1, X2, . . . is a sequene of independent and identi-ally distributed vetors then there exists an investment strategy whoseasymptoti rate of growth equals W�. However, it is easy to see that, in12



general, if the market is stationary but not neessarily i.i.d. then ahievingthe optimal rate of growth in the presene of transation osts is impossi-ble. To see this, onsider the simple markovian example in whih d = 2and, deterministially, when n is odd, X(1)
n = 0 and X(2)

n = 1 and when
n is even, X(1)

n = 1 and X(2)
n = 0. In this ase learly W� = 0, but toahieve it, the total wealth has to be moved eah in period from one as-set to another, and transation osts fore a rate of growth bounded awayfrom zero (from below). However, in pratie, simple modi�ations of thekernel-based strategies may work quite well even when transation ostsare present. Some numerial examples are o�ered in Setion 4.Remark. (validity os assumptions.) The theoretial results assumelittle more than stationarity and ergodiity of the market. Obviously, thereis no empirial test to deide whether a market satis�es these propertiesor not. The pratial usefulness of these assumptions should be judgedbased on the numerial results the investment strategies lead to. In thenext setion we desribe various suh results based on past data. Theseresults suggest that the market an be modeled e�etively by a low-orderstationary Markov proess. This is evidened by the good behavior of someexperts that operate on suh an assumption. We emphasize again that thesenumerial results ignore the e�et using suh a strategy may have on themarket.Remark. (volatility.) In this paper we ompletely ignore the issue ofvolatility and fous on almost sure onvergene of the growth rate (1/n) logSn.Controlling the volatility of the proess is obviously a relevant and non-trivial problem. One again we refer the reader to the numerial results ofthe next setion that suggest that the ahieved wealth, in fat, has a lowvolatility. However, we do not have any theoretial guarantees.Next we desribe a lass of general kernel-based investment strategies.These strategies are based on a sequene of kernel funtion Kk : Rkd

+ → R+.The de�nition of a generalized kernel-based strategy parallels that of BKde�ned above with the only di�erene that in the de�ning equation (2) ofthe elementary strategies H(k,ℓ), the portfolio vetor b(k,ℓ)(xn−1
1 , s) is de�ned13



by
b(k,ℓ)(xn−1

1 , s) = argmax
b2∆d

∏

k<i<n

hb , xii w
(k,ℓ)

i∑
k<j<n w

(k,ℓ)

j ,where the weights w
(k,ℓ)
i are de�ned by

w
(k,ℓ)
i = Kk

�
ℓ(xi−1

i−k − s)
�and 0/0 is understood as 0.Observe that if Kk is the uniform (or moving window) kernel Kk(x) =Ikxk�c (x 2 Rkd

+ ) then we reover the de�nition of the strategy BK introduedabove. Typial nonuniform kernels assign a smaller weight to those xi forwhih the distane of xi−1
i−k from s is larger. Suh kernels promise a betterpredition of the loal struture of the onditional distribution. The nextresult extends Theorem 1 to a lass of general kernels. The proof is givenin Setion 5.Theorem 2 Assume that for eah k = 1, 2, . . . the kernel Kk is suh thatthere exists a non-inreasing funtion φk de�ned on R+ with φk(+0) >

0 and limt→∞ tdφk(t) = 0 suh that for some onstants c1, c2 > 0, forall x 2 Rkd
+ ,

c1φk(kxk) � Kk(x) � c2φk(kxk) .Then the kernel-based portfolio sheme de�ned above is universal withrespet to the lass of all ergodi proesses suh that E {| log X(j)|} < ∞,for j = 1, 2, . . . d.4 Pratial implementation and numerial re-sultsThe purpose of this setion is to disuss some issues of the pratial imple-mentation of the investment strategies BH and BK desribed in the previoussetions and to report numerial results of the appliation of the algorithmsto real �nanial data. 14



Both strategies have in ommon that they use an in�nite array of ex-perts. In pratie, one hooses two positive integers K and L and replaethe in�nite array of elementary strategies by a �nite array of KL experts
H(k,ℓ), k = 1, . . . , K, ℓ = 1, . . . , L de�ned by (1) and (2), for both strategies.Reall that k is the length of the reent market history mathed by datain the past and ℓ indexes the �neness of the disretization sheme in use,usually �ner as ℓ inrease. We also inlude, as an additional expert, withindex k = ℓ = 0, the strategy that uses the full history to alulate theportfolio by

h(0,0)(xn−1
1 ) = argmax

b2∆d

∏

0<i<n

hb , xii , n > 1 .In all ases reported below we used the uniform distribution {qk,ℓ} = 1/(KL+

1) over the experts in use.The next table gives a shemati desription of the algorithm imple-menting the strategies desribed in Setions 2 and 3.
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Given x1, . . . , xn−1 2 Rd, to ompute the portfolio for the n-th tradingperiod,1. for eah expert (k, ℓ), k = 1..K, ℓ = 1..L do1.1 ComputeHistory(k,l): ollet the data from those trainingperiods in the past that followed a k-period string simi-lar to xn−k, . . . , xn−1 and plae these periods in the historylist. What �similar� means depends on whether we use ahistogram-based strategy (see below) or a kernel-based strat-egy, where all past periods are weighted as desribed in theprevious setion.1.2 MaximizeOverHistory(k,l): �nd the portfolio hk,ℓ that max-imizes wealth for the empirial distribution of the data ol-leted in the history list;2. CombinePortfolios: weighting the experts with the wealth ahievedso far, and a �prior� probability distribution q(k, ℓ), obtain a port-folio bn to invest in the urrent period n.Then, using the newly aquired data xn,3. update the wealth for eah expert and the urrent atual wealth;4. store xn for use in the next period, disretizing it in the histogramase.To desribe preisely the histogram-based strategy BH used in our ex-periments, we need to de�ne the ells of the partitions Pℓ determining theexperts. Sine typial values of the prie relatives x(j)
n onentrate around

1, we used the following sheme. Given ℓ 2 1, . . . , L, in eah dimension weuse M = 2 + 2ℓ ells. For x 2 R, the index q of its ell is omputed as
16



follows. De�ne a = 1/2(1 + 2 log10 ℓ) and w = a−1/ℓ. Then
q =





0 if x � a

1 +
j log(x/a)logw

k if x 2 (a, 1]

ℓ + 1 +
j log(ax)+ℓlogwlogw

k if x 2 (1, 1/a]

2ℓ + 1 if x > 1/aThus, the ell boundaries are 0, a, aw, . . . , awℓ, 1, a−1w−ℓ, . . . , a−1, ∞, giv-ing a variable-width grid that beomes �ner lose to 1. Then for any x 2 Rd,
Gℓ(x), is the vetor of integers {q(j)}j=1,...,d.To implement the kernel-based investment strategy BK desribed inSetion 3, one needs to hoose the kernel funtion K. In the experimentsreported here we used the simple �moving-window� kernel K(x) = Ikxk�ckwhere k�k is the eulidean norm and tried di�erent hoies of the onstants
ck, all of the form ck = ckd, for di�erent values for c. We denote the kernel-based strategy with the moving-window kernel and onstants ck = ckd by
BK(c).To �nd the portfolio that solves the maximization problem in (1) or (2)we use the routines DONLP2 of Spellui [23℄.Remark. (omputational ost.) To give an idea of the omputationalost of the proposed algorithms, running the experimental study using theuniform kernel on the full nyse dataset desribed below took about 12hours on a Xeon 2.00 GHz based omputer. This means that to omputethe portfolio of 36 assets for a single period, about 8 seonds are needed onaverage. Of ourse, real-time implementation of these investment strategieswould require storage of disretized data and values of performane of theexperts used, but the extra omputational ost of reading these stored datais negligible.Numerial resultsWe tested the investment strategies on two di�erent sets of �nanial data.One of these is a standard set of New York Stok Exhange data usedby Cover [10℄, Singer [22℄, Hembold, Shapire, Singer, and Warmuth [18℄,17



Blum and Kalai [5℄, Borodin, El-Yaniv, and Gogan [6℄, and others. Theother is exhange rate data between US$ and eight other urrenies.The nyse data set inludes daily pries of 36 assets along a 22-year pe-riod (5651 trading days) ending in 1985. This means that d = 36. Beauseof this large dimensionality, our urrent implementation annot handle thehistogram strategy. Table 1 summarizes the wealth ahieved by the kernel-based strategy for three di�erent hoies of the onstant c. In all ases, weuse K = 5, L = 10. For the sake of omparison, we also indiate the wealthahieved by the best onstantly rebalaned portfolio (brp). (Note thatthis �antiipating� portfolio does not orrespond to any valid investmentstrategy sine the brp an only be determined in hindsight.) The mostimportant feature is that after the whole 22-year period some versions of BKmultiply their initial wealth by a fator of more than �ve-hundred million.A loser inspetion of the results reveal that there is a small number ofelementary strategies responsible for this spetaular growth. This demon-strates how BK is able to exploit e�etively hidden dependenes that aredi�ult to reveal otherwise. It is interesting to note that in the seond halfof the period the growth is signi�antly faster than in the �rst. This maybe due to the fat that in the initial �learning� phase not enough data hasbeen olleted to disover the signi�ant tendenies.We also tested the disussed investment strategies on data obtainedfrom Datastream (a ommerial database) about the exhange rate to US$of several urrenies. In partiular, we got daily variations, with respetto the US$, from Marh 25, 1988 to Marh 27, 2003, a total of N = 3914periods, of the eight urrenies listed in Table 2. The table also lists the�nal value of one initial US$ invested in eah urreny and the minimum,25th perentile, median, 75th perentile and maximum of eah series.The ahieved wealth of the histogram-, and kernel-based strategies arelisted in Table 3. The numbers show the wealth ahieved, in US dollars,after an initial investment of 1 US$ uniformly divided among all the ur-renies inluded in the data set (i.e., d = 8) and then running the strategiesalong the full period range. In the histogram ase we use K = 3, L = 5 whilefor the kernel-based strategy we use the setting previously desribed. Thegrowth of wealth for BK(0.1) during the whole period is shown in Figure18



After period brp BK(2) BK(1.00) BK(0.5)500 13.07 4.539 4.265 2.7591000 7.324 3.894 5.113 4.4021500 16.03 7.621 9.805 7.9092000 10.21 7.052 7.535 6.9012500 17.48 39.35 40.08 34.873000 18.81 321.7 853.3 505.03500 34.57 2876 2.231e+4 1.641e+44000 55.52 4.7974e+4 8.968e+5 5.531e+54500 106.8 2.5802e+5 5.447e+6 3.116e+65000 125.4 9.035e+5 4.030e+7 2.083e+75500 267.8 5.662e+6 4.725e+08 2.103e+85651 250.6 7.037e+6 5.627e+08 2.633e+8Table 1: Wealth ahieved by various versions of the kernel-based strategy
BK. In all ases one unit is invested in the �rst period uniformly in all 36stoks inluded in our nyse data set. BK(c) is the kernel strategy withonstant c and brp is the best onstantly rebalaned portfolio.
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Curreny Final Min p25 Median p75 MaxSingapoore Dollar 1.138 -0.0247 -0.0012 0.000 0.0013 0.0379Norwegian Crown 0.856 -0.0529 -0.00345 0.000 0.0037 0.049Swiss Fran 1.007 -0.048 -0.0044 0.000 0.0044 0.054ECU/Euro 0.867 -0.050 -0.0035 0.000 0.0035 0.034Israeli Shekel 0.3323 -0.1156 -0.0017 0.000 0.0015 0.1221Indian Rupee 0.2743 -0.0869 -0.0003 0.000 0.0002 0.0667Canadian Dollar 0.849 -0.017 -0.0018 0.000 0.0018 0.0190British Pound 0.8504 -0.0420 -0.0031 0.000 0.0033 0.0431Table 2: Some desriptive statistis about the exhange rate data used.Seond olumn lists wealth in US$ ahieved by investing one US$ in the�rst period in the orresponding urreny. The rest of the olumns showthe minimum, 25th perentile, median, 75th perentile and maximum ofeah series of returns along the full range of periods (1 � n � 3914).4. Even though the results here are not as spetaular as in the ase of thenyse data, after an initial learning period of about 1000 days, the kernel-based portfolio learly outperforms the best urreny, the best onstantlyrebalaned portfolio, and the histogram-based strategy.To relieve the omputational burden, we tested a variant of the disussedstrategies whih works as follows. The strategy distributes the initial wealthevenly among all �d

2

� pairs of assets. Then for eah pair, the histogram (orkernel) based strategy is used independently. The �rst row of Table 4 liststhe wealth ahieved by this strategy using all �8

2

�
= 28 pairs of urrenies ofthe exhange rate data by the di�erent methods. The seond row reportsa version in whih instead of pairs, all �8

3

�
= 56 triples of urrenies areused. The third row orresponds to investing one unit divided among all�

36

2

�
= 630 possible pairs of stoks in the nyse data set. We see that, eventhough no theoretial guarantee an be given for the universality of thesevariants, the numerial performane of these simpli�ed methods does notdeteriorate signi�antly (it even improves in the ase of the nyse data).In Table 5 we ompare the wealth ahieved by the strategies disussed20



After period brp BH BK(0.3) BK(0.1) BK(0.05)500 1.078 1.112 1.060 1.145 1.0851000 1.227 1.445 1.788 1.971 1.5321500 1.262 3.234 5.586 8.698 5.2192000 1.425 6.553 12.81 23.01 13.162500 1.273 9.009 15.21 32.99 18.533000 1.178 11.16 22.22 51.91 28.913500 1.152 20.04 43.64 111.8 60.893914 1.138 35.47 83.52 229.7 124.28Table 3: Wealth ahieved by various investment strategies for the urrenyexhange data. In all ases one US$ is invested in the �rst period uniformlyin all 8 urrenies desribed in Table 2. brp is the onstant rebalanedportfolio, BH is the histogram-besed strategy, and BK(c) is the kernel strat-egy.
BH BK(0.01) BK(0.05) BK(0.5)All exhr pairs 14.25 5.393 12.65 0.8832All exhr triples 21.59 7.095 26.77 1.270All nyse pairs � � 4.31e8 1.285e10Table 4: Wealth ahieved by investing one unit divided among all thepossible pairs or triples for the exhange rate (exhr) and nyse data.
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Figure 1: Wealth ahieved along N = 3925 daily periods by investing oneUS$ in several urrenies, and by using the kernel-based strategy omputedwith d = 8 urrenies, like in olumn �ve of Table 3. Horizontal axis istime period number, vertial is the wealth ahieved, in logarithmi sale.22



here to other methods found in the literature. We report the wealthahieved by di�erent strategies for the pairs of nyse stoks used by Cover[10℄ (to test his universal portfolio) and by Singer [22℄ (for his �swithingportfolios�). As a referene, we also list the wealth of some other strate-gies only omputable with hindsight. BH and BK learly outperform bothCover's universal portfolio and Singer's swithing portfolios. It is also in-teresting to note that the presene of the stok Kin Ark makes the wealthof these strategies explode. This is interesting, sine the overall growth ofKin Ark in the reported period is quite modest. The reason is that some-how the variations of the prie relatives of this asset turn out to be wellpreditable by at least one expert and that su�es to produe this explo-sive growth. Indeed, the presene of this single stok is largely responsiblefor the wealth reported in Table 1. Removing this single stok from theportfolio, the ahieved wealth of BK(1.0) redues to a muh more modestvalue of 753.76 (whih still orresponds to an annual rate of inrease ofabout 135%).Finally, we brie�y present some results on the performane of thesestrategies in the presene of transation osts. It is not straightforwardto adapt our methods in an optimal way when transations osts haveto be paid. More preisely, assume that a �xed perentage ommission
r 2 (0, 1) has to be payed at eah transation. The results reported hereare very likely improvable and orrespond to the simplisti method in whiheah expert is weighed by the wealth ahieved in presene of transationosts, and use the resulting portfolio. Namely, let Sr

n(H(k,ℓ)) be the wealthahieved by expert (k, ℓ) after period n. (This may be omputed using anoptimal rebalaning strategy, see Blum and Kalai [5℄). Then, the portfoliois alulated by
b(xn−1

1 ) =

∑
k,ℓ qklS

r
n−1(H

(k,ℓ))h(k,ℓ)(xn−1
1 )∑

k,ℓ qklS
r
n−1(H

(k,ℓ))
,and the wealth ahieved by the strategy B beomes

Sr
n(B) = S0

n∏

i=1

hbi , xiiαr(bi−1, bi)23



Stoks Best Exp. [k, ℓ]Iroquois Best asset 8.92 BH 2.3e+10 1.395e+11 [1,1℄Kin Ark brp 73.70 BK 2.109e+04 1.087e+06 [1,1℄Orale 6.85e+53 4.038e+10 9.014e+11 [2,2℄Cover up 39.97 2.187e+10 9.014e+11 [2,1℄Singer sap 143.7 7.401e+10 9.014e+11 [2,5℄Com. Met. Best asset 52.02 BH 162.5 327.8 [2,1℄Mei. Corp brp 103.0 BK 96.9 433.3 [1,2℄Orale 2.12e+35 775.1 4749. [2,5℄Cover up 74.08 373.8 4613 [4,1℄Singer sap 107.7 682.3 4613 [4,5℄Com. Met. Best asset 52.02 BH 1.331e+10 8.544e+10 [1,1℄Kin Ark brp 144.0 BK 1.52e+07 7.847e+08 [1,1℄Orale 1.84e+49 1.111e+11 1.411e+12 [3,3℄Cover up 80.54 5.395e+10 1.411e+12 [3,℄1Singer sap 206.7 2.551e+11 2.065e+12 [2,8℄IBM Best asset 13.36 BH 63.87 112.2 [1,5℄Coa-Cola brp 15.02 BK 18.92 86.1 [1,1℄Orale 1.08e+15 47.6 194.6 [1,6℄Cover up 14.24 46.46 194.6 [1,6℄Singer sap 15.05 18.11 60.56 [3,10℄Table 5: Wealth ahieved by di�erent strategies by investing in the pairs ofnyse stoks used in Cover [10℄. In the seond olumn we show the wealthahieved by the best stok of the two involved, by the best onstantlyrebalaned portfolio, by an orale (de�ned as the best possible strategywhih invests all the apital in the best stok eah day), and the resultsreported in the literature for Cover's universal portfolio (up) and Singer'sswithing adaptive portfolio (sap). The third olumn lists our results forthe histogram (BH) and kernel (BK) portfolios. In all ases we take K =

5, L = 10, and c = 0.01, 0.05, 0.1, 0.5 for BK. The last olumn lists thewealth and the index of the best expert among the KL + 1 ompetingexperts. 24



where αr(b, b 0) denotes the wealth loss ratio due to the transation ost cwhen rebalaning the portfolio b to b 0.We applied this simple approah to the nyse data for several values ofthe transation ost r. It is shown in Figure 2 that the wealth redution isimportant but still gives a good result for reasonable values of the ost r.
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Figure 2: Wealth ahieved by investing one unit uniformly in the 36 nysestoks and using the kernel strategy (with onstant 1.0) for several valuesof the transation osts r = 0, 0.001, 0.002, . . . , 0.012.
5 ProofsThe proof of Theorem 1 uses the following three auxiliary results. The �rstis known as Breiman's generalized ergodi theorem [7℄, see also Algoet [2℄.25



Lemma 1 (breiman [7℄). Let Z = {Zi}
∞
−∞ be a stationary and ergodiproess. For eah positive integer i, let T i denote the operator thatshifts any sequene {. . . , z−1, z0, z1, . . .} by i digits to the left. Let f1, f2, . . .be a sequene of real-valued funtions suh that limn→∞ fn(Z) = f(Z)almost surely for some funtion f. Assume that E supn |fn(Z)| < ∞.Then lim

n→∞
1

n

n∑

i=1

fi(T
iZ) = E f(Z) almost surely.The next two lemmas are due to Algoet and Cover [3, Theorems 3 and4℄.Lemma 2 (algoet and over [3℄). Let Qn2N[{∞} be a family of reg-ular probability distributions over the set Rd

+ of all market vetorssuh that E {| log U(j)
n |} < ∞ for any oordinate of a random marketvetor Un = (U(1)

n , . . . , U(d)
n ) distributed aording to Qn. In addition,let B�(Qn) be the set of all log-optimal portfolios with respet to Qn,that is, the set of all portfolios b that attain maxb2∆d

E {log hb , Uni}.Consider an arbitrary sequene bn 2 B�(Qn). If
Qn → Q∞ weakly as n → ∞then, for Q∞-almost all u,lim

n→∞ hbn , ui → hb� , uiwhere the right-hand side is onstant as b� ranges over B�(Q∞).Lemma 3 (algoet and over [3℄). Let X be a random market vetorde�ned on a probability spae (Ω,F ,P) satisfying E {| log X(j)|} < ∞. IfFk is an inreasing sequene of sub-σ-�elds of F withFk ր F∞ � F ,then E {max
b

E [log hb , Xi |Fk]
}

ր E {max
b

E [log hb , Xi |F∞ ]
}as k → ∞ where the maximum on the left-hand side is taken over allFk-measurable funtions b and the maximum on the right-hand sideis taken over all F∞-measurable funtions b.26



Proof of Theorem 1. The proof is based on tehniques used in relatedpredition problems, see Györ�, Lugosi, and Morvai [16℄, Györ� and Lugosi[15℄, Györ� and Shäfer [17℄. We need to prove thatlim inf
n→∞ Wn(B) = lim inf

n→∞
1

n
log Sn(B) � W� almost surely.Without loss of generality we may assume S0 = 1, so that

Wn(B) =
1

n
logSn(B)

=
1

n
log0�∑

k,ℓ

qk,ℓSn(H(k,ℓ))

1A� 1

n
log sup

k,ℓ

qk,ℓSn(H(k,ℓ))

!
=

1

n
sup
k,ℓ

�logqk,ℓ + log Sn(H(k,ℓ))
�

= sup
k,ℓ

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!
.Thus lim inf

n→∞ Wn(B) � lim inf
n→∞ sup

k,ℓ

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!� sup
k,ℓ

lim inf
n→∞

 
Wn(H(k,ℓ)) +

logqk,ℓ

n

!
= sup

k,ℓ

lim inf
n→∞ Wn(H(k,ℓ)). (3)The simple argument above shows that the asymptoti rate of growth ofthe strategy B is at least as large as the supremum of the rates of growthof all elementary strategies H(k,ℓ). Thus, to estimate lim infn→∞ Wn(B), itsu�es to investigate the performane of expert H(k,ℓ) on the stationaryand ergodi market sequene X0, X−1, X−2, . . .. First let the integers k, ℓand the vetor s = s−1

−k 2 Rdk
+ be �xed. Let P(k,ℓ)

j,s denote the (random)measure onentrated on {Xi : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ} de�nedby P(k,ℓ)

j,s (A) =

∑
i:1−j+k�i�0,kXi−1

i−k
−sk�c/ℓIA(Xi)

|{i : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ}|

, A � Rd
+27



where IA denotes the indiator funtion of the set A. If the above set of Xi'sis empty, then let P(k,ℓ)
j,s = δ(1,...,1) be the probability measure onentratedon the vetor (1, . . . , 1). In other words, P(k,ℓ)

j,s (A) is the relative frequenyof the the vetors among X1−j+k, . . . , X0 whih fall in the set A.Observe that for all s, with probability one,P(k,ℓ)
j,s →

{ PX0 |kX−1
−k

−sk�c/ℓ if P(kX−1
−k − sk � c/ℓ) > 0,

δ(1,...,1) if P(kX−1
−k − sk � c/ℓ) = 0

(4)weakly as j → ∞ where PX0|kX−1
−k

−sk�c/ℓ denotes the distribution of thevetor X0 onditioned on the event kX−1
−k − sk � c/ℓ. To see this, let f bea bounded ontinuous funtion de�ned on Rd

+. Then the ergodi theoremimplies that
∫

f(x)P(k,ℓ)
j,s (dx) =

1
|1−j+k|

∑
i:1−j+k�i�0,kXi−1

i−k
−sk�c/ℓ f(Xi)

1
|1−j+k|

|{i : 1 − j + k � i � 0, kXi−1
i−k − sk � c/ℓ}|

→
E {f(X0)I{kX−1

−k
−sk�c/ℓ}}P{kX−1

−k − sk � c/ℓ}

= E {
f(X0)

���kX−1
−k − sk � c/ℓ

}

=

∫
f(x)PX0 |kX−1

−k
−sk�c/ℓ(dx) almost surely, as j → ∞if P(kX−1

−k − sk � c/ℓ) > 0. On the other hand, if P(kX−1
−k − sk � c/ℓ) = 0,then with probability one P(k,ℓ)

j,s is onentrated on (1, . . . , 1) for all j, and
∫

f(x)P(k,ℓ)
j,s (dx) = f(1, . . . , 1) .Denote the limit distribution of P(k,ℓ)

j,s by P�(k,ℓ)
s .Reall that by de�nition, b(k,ℓ)(X−1

1−j, s) is a log-optimal portfolio withrespet to the probability measure P(k,ℓ)
j,s . Let b�

k,ℓ(s) denote a log-optimalportfolio with respet to the limit distribution P�(k,ℓ)
s . Then, using Lemma2, we infer from (4) that, as j tends to in�nity, we have the almost sureonvergene lim

j→∞

D
b(k,ℓ)(X−1

1−j, s) , x0

E
= hb�

k,ℓ(s) , x0i28



for P�(k,ℓ)
s -almost all x0 and hene for PX0

-almost all x0. Sine s was arbi-trary, we obtainlim
j→∞

D
b(k,ℓ)(X−1

1−j, X
−1
−k) , x0

E
=
D
b�

k,ℓ(X
−1
−k) , x0

E almost surely. (5)Next we apply Lemma 1 for the funtion
fi(x

∞
−∞) = log Dh(k,ℓ)(x−1

1−i) , x0

E
= log Db(k,ℓ)(x−1

1−i, x
−1
−k) , x0

Ede�ned on x∞
−∞ = (. . . , x−1, x0, x1, . . .). Note that
fi(X

∞
−∞) =

���log Dh(k,ℓ)(X−1
1−i) , X0

E��� � d∑

j=1

���logX
(j)
0

��� ,whih has �nite expetation, and
fi(X

∞
−∞) →

D
b�

k,ℓ(X
−1
−k) , X0

E almost surely as i → ∞by (5). As n → ∞, Lemma 1 yields
Wn(H(k,ℓ)) =

1

n

n∑

i=1

fi(T
iX∞

−∞)

=
1

n

n∑

i=1

log Dh(k,ℓ)(Xi−1
1 ) , Xi

E
→ E {log Db�

k,ℓ(X
−1
−k) , X0

E}def
= ǫk,ℓ almost surely.Therefore, by (3) we havelim inf

n→∞ Wn(B) � sup
k,ℓ

ǫk,ℓ � sup
k

lim inf
ℓ

ǫk,ℓ almost surelyand it su�es to show that the right-hand side is at least W�.To this end, de�ne, for Borel sets A, B � Rd
+,

mA(z) = P{X0 2 A|X−1
−k = z}29



and
µk(B) = P{X−1

−k 2 B}.Then for any s 2 support(µk), and for all A,P�(k,ℓ)
s (A) = P{

X0 2 A
���kX−1

−k − sk � c/ℓ
}

=
P{X0 2 A, kX−1

−k − sk � c/ℓ}P{kX−1
−k − sk � c/ℓ}

=
1

µk(Ss,c/ℓ)

∫

Ss,c/ℓ

mA(z)µk(dz)

→ mA(s) = P{X0 2 A|X−1
−k = s}as ℓ → ∞ and for µk-almost all s by the Lebesgue density theorem (see[14, Lemma 24.5℄), and thereforeP�(k,ℓ)

X−1
−k

(A) → P{X0 2 A|X−1
−k}as ℓ → ∞ for all A. Thus, using Lemma 2 again, we havelim inf

ℓ
ǫk,ℓ = lim

ℓ
ǫk,ℓ

= E {log Db�
k(X

−1
−k) , X0

E}(where b�
k(�) is the log-optimum portfolio with respetto the onditional probability P{X0 2 A|X−1

−k})
= E {E { log Db�

k(X
−1
−k) , X0

E���X−1
−k

}}

= E {max
b(�) E { log Db(X−1

−k) , X0

E���X−1
−k

}}def
= ǫ�k .To �nish the proof we appeal to the sub-martingale onvergene theorem.First note that the sequene

Yk
def
= E { log Db�

k(X
−1
−k) , X0

E���X−1
−k

}
= max

b(�) E { log Db(X−1
−k) , X0

E���X−1
−k

}
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of random variables forms a sub-martingale, that is, E {
Yk+1|X

−1
−k

} � Yk.To see this, note thatE {
Yk+1|X

−1
−k

}
= E { E { log Db�

k+1(X
−1
−k−1) , X0

E���X−1
−k−1

}����X−1
−k

}� E { E { log Db�
k(X

−1
−k) , X0

E���X−1
−k−1

}����X−1
−k

}

= E { log Db�
k(X

−1
−k) , X0

E���X−1
−k−1

}

= Yk .This sequene is bounded bymax
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}whih has a �nite expetation. The sub-martingale onvergene theorem(see, e.g., Stout [25℄) implies that this sub-martingale is onvergent almostsurely, and supk ǫ�k is �nite. In partiular, by the submartingale property,
ǫ�k is a bounded inreasing sequene, so thatsup

k

ǫ�k = lim
k→∞

ǫ�k .Applying Lemma 3 with the σ-algebras
σ
�
X−1

−k

�
ր σ

�
X−1

−∞
�yields sup

k

ǫ�k = lim
k→∞

E {max
b(�) E { log Db(X−1

−k) , X0

E���X−1
−k

}}

= E {max
b(�) E { log Db(X−1

−∞) , X0

E���X−1
−∞

}}

= W�and the proof of the theorem is �nished.Sketh of proof of Theorem 2. The proof parallels that of Theorem 1so we only indiate the di�erenes. 31



The de�nition of the random measure P(k,ℓ)
j,s is now hanged toP(k,ℓ)

j,s (A) =

∑
i:1−j+k�i�0 w

(k,ℓ)
i IA(Xi)

∑
i:1−j+k�i�0 w

(k,ℓ)
i

, A � Rd
+whose weak limit distribution, as j → ∞, beomesP�(k,ℓ)

s (A) =
E {IX02AKk

�
ℓ(X−1

−k − s)
�}E {

Kk

�
ℓ(X−1

−k − s)
�}

=

∫
mA(z)Kk (ℓ(z − s))µk(dz)∫
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