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Abstract 

 
Original motivation for this paper is the investigation of a correlation filter to 
improve the risk/return performance of the trading models. Further motivation 
is to extend the trading of futures spreads past the “Fair Value” type of model 
used by Butterworth and Holmes (2003).  
 
The trading models tested are the following; the cointegration “fair value” 
approach, MACD, traditional regression techniques and Neural Network 
Regression. Also shown is the effectiveness of the two types of filter, a 
standard filter and a correlation filter on the trading rule returns. 
 
Our results show that the best model for trading the WTI-Brent spread is an 
ARMA model, which proved to be profitable, both in- and out-of-sample. This 
is shown by out-of-sample annualised returns of 34.94% for the standard and 
correlation filters alike (inclusive of transactions costs). 
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1. Introduction 
 
The prospect of trading spreads should be of interest to technical traders who 
are limited in the amount they can invest. As stated in Tucker (2000) “spread 
margins can be as much as 80% lower or more…in some commodities 
margin requirements are prohibitive. Spreads, however, offer an affordable 
alternative approach.” In addition to this it is important to note that spreads are 
less likely to suffer from information shocks, as the movement of the two legs 
will offset each other. A further point of note is that spreads are less likely to 
be subject to speculative bubbles. Sweeney (1986) notes that speculative 
bubbles are a big source of market inefficiency. This effect is less likely to 
happen in spread markets because any bubble effect will be replicated in the 
opposing leg of the spread (assuming the two legs are sufficiently correlated), 
the effect of the bubble therefore being largely offset. 
 
This paper will focus on the most liquid of futures markets, that of oil. In 
particular the WTI-Brent spread. This spread is the difference between two 
types of crude oil, West Texas Intermediate (WTI) on the long side and Brent 
Crude (Brent) on the short side; this spread will from here on in be referred to 
as WTI-Brent. 
 
The two oils concerned differ only in the ability of WTI to produce slightly more 
Gasoline in the cracking ratio (this is due to lower levels of sulphur and lower 
gravity, these concepts are further explained in section 3). Gasoline being 
traditionally more valuable than the other derivatives of the cracking process 
is the cause of WTI’s slight pricing margin over Brent. It is not surprising given 
the above two points that this spread shows significant signs of a predictable 
pricing structure. 
 
This paper extends work by Butterworth and Holmes (2003) by expanding on 
the fair value approach. In this paper we include a fair value model, but 
compare this to traditional time series models and Neural Network 
Regressions (henceforth NNR). We also pick up on the point made by 
Butterworth and Holmes (2003) that “the overall profitability of the strategy is 
seriously impaired by the difficulty, which traders face, in liquidating their 
positions” by using both a standard and a correlation filter to further refine the 
performance of the trading models. The results prove positive with the ARMA 
time series model significantly out-performing the Fair Value model. Further, 
in most cases the application of a filter improves the results of the model, in 
terms of the out-of-sample Sharpe ratio. 
 
The remainder of this paper will be structured as follows; Section 2 will 
present some of the relevant literature, section 3 gives details of the dataset 
used, section 4 shows the methodology and gives details of the transaction 
costs. Section 5 presents the trading rules used and explains how the two 
filters are applied. Sections 6 and 7 will give the results and conclusions 
respectively. 
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2. Literature Review 
 
Spread trading was first introduced formally into the finance literature by 
Working (1949), who investigated the effects of the cost of storage on pricing 
relationships. It was demonstrated that futures traders could profit from the 
existence of abnormalities in the pricing relationships between futures 
contracts of different expiry. 
 
Meland (1981) gives further justification for interest in spread trading stating 
that “although spread trading has been used to speculate on the cost of carry 
between different futures contracts, spread trading also serves the functions 
of arbitrage and hedging, together with providing a vital source of market 
liquidity”. It is therefore surprising that whilst there has been interest in cash-
futures arbitrage1, inter-commodity spread trading has been largely ignored 
among the academic fraternity2. 
 
Spread trading is also of benefit since it increases the amount of investment 
opportunities, Peterson (1977) and Francis and Wolf (1991) explain this 
further. 
 
Studies such as Sweeney (1986), Pruitt and White (1988) and Dunis (1989) 
directly support the use of technical trading rules as a means of trading 
financial markets. Trading rules such as moving averages, filters and patterns 
seemed to generate returns above the conventional buy and hold strategy. 
Lukac and Brorsen (1990) carried out a comprehensive test of futures market 
trading. It was found that all but one of the trading rules tested generated 
significantly abnormal returns. Sullivan, Timmerman and White (1998), 
investigated the performance of technical trading rules over a 100-year period 
of the Dow Jones Industrial Average, they conclude “there is no evidence that 
any trading rule outperforms [the benchmark buy and hold strategy] over the 
sample period.” 
 
With the increasing processing power of computers, rule induced trading has 
become far easier to implement and test. Kaastra and Boyd (1995) 
investigated the use of Neural Networks for forecasting financial and 
economic time series. They concluded that the large amount of data needed 
to develop working forecasting models involved too much trial and error. On 
the contrary Chen et al. (1996), study the 30-year US Treasury bond using a 
neural network approach. The results prove to be good with an average buy 
prediction accuracy of 67% and an average annualised return on investment 
of 17.3%. 
 
In recent years there has been an expansion in the use of computer trading 
techniques, which has once again called into doubt the efficiency of even very 
liquid financial markets. Lindemann et al. (2004) suggest that it is possible to 
achieve abnormal returns on the Morgan Stanley High Technology 35 index 
using a Gaussian mixture neural network trading model. Lindemann et al. 

                                                 
1 See for example Mackinlay and Ramaswamy (1988), Yadav and Pope (1990), and Chung (1991), 
among others. 
2 Notable exceptions include Billingsley and Chance (1988), Board and Sutcliffe (1996) and 
Butterworth and Holmes (2003) 
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(2003) justified the use of the same model to successfully trade the EUR/USD 
exchange rate, an exchange rate noted for its liquidity. 
 
The paper from which we take our lead, Butterworth and Holmes (2003) 
states “an analysis of spread trading is important since it contributes to the 
economics of arbitrage and serves as an alternative to cash-futures arbitrage 
for testing for futures market efficiency”. They test the fair value cointegration 
model on the FTSE250 – FTSEMID100 spread and conclude “while there are 
many deviations from fair value, these are generally quite small in actual 
magnitude, indicating that both contracts tend to be efficiently priced”. Their 
paper forms the platform of this research, however we have extended the 
number of trading models used, into a full technical trading analysis. We have 
also included an investigation of the correlation filter, which potentially 
provides a new methodology for filtering trades on spread markets. 
 
3. Data 
 
The dataset used in this study is daily closing prices from 1995 until 2004 of 
the WTI, Light3, Sweet4 crude oil futures contract and the Brent Crude oil 
futures contract. Prices have been taken for this period in order to maintain 
closing time synchronicity. Since November 1994 the International Petroleum 
exchange (IPE) and New York Mercantile Exchange (NYMEX) have closed at 
identical times; therefore lending more tradability to the results. These two 
time series are combined to form the WTI-Brent spread simply by subtracting 
the price of the Brent contract from the price of the WTI contract of the same 
expiry. All data was taken from Datastream®. 
 
4. Methodology 
 
The spread returns series is calculated in the following way: 
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Where: 
WTIt = Price of WTI at time t 
WTIt-1 = Price of WTI at time t-1 
Brentt = Price of Brent at time t 
Brentt-1 = Price of Brent at time t-1 
This convention allows for the calculation of annualised returns and 
annualised standard deviation to be done in the usual way.  
 

                                                 
3 Light refers to the level of “gravity” of the oil. Light oil will have not less than 37° API gravity or 
more than 42° API gravity. Gravity is an arbitrary scale representing the viscocity and density of the oil 
(see; www.emis.platts.com/thezone/ guides/platts/oil/glossary). API is the “American Petroleum 
Institute”. 
4 Sweet refers to the Sulphur level of the oil. A sweet oil will have not more than 0.42% Sulphur by 
weight. 
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For all trading rules apart from the Neural Network Regression the data has 
been split into two subsections; they are: 
 
Subset Purpose Period 
In-Sample Optimise Model 03/01/1995 – 02/07/2002 
Out-of-Sample Test Model 03/07/2002 – 01/01/2004 
 
The first subset (the in-sample subset) will be used to test all the models and 
find the optimum of each model type. The second subset (the out-of-sample 
subset) will be used as a simulation of future prices to trade the optimised 
models. It is very important that the out-of-sample dataset does not affect our 
trading decision. For this reason it has been kept as a separate file and only 
used when the trading model has been decided upon.  
 
In the case of the NNR model, and in order to avoid overfitting, the data will 
be split into three subsets; they are as follows: 
 
Subset Purpose Period 
1 (Training) Optimise model 03/01/1995 – 29/12/1999 
2 (Test) Stop model optimisation 01/01/2000 – 02/07/2002 
3 (Validation) Test model 03/07/2002 – 01/01/2004 
 
The NNR model is trained slightly differently to the other models. The training 
dataset is used to train the network, the minimisation of the error function 
being the criteria optimised. The training of the network is stopped when the 
profit on the test dataset is at a maximum. This model will then be traded on 
the validation subset, which for comparison purposes is identical to the out-of-
sample dataset used for the other models. This technique restricts the amount 
of noise that the model will fit, whilst also ensuring that the structure inherent 
in the Training and Test subsets is modelled. Detailed explanation of this is 
contained in section 5.4. 
 
4.1 Forming the Continuous Series 
 
Trading on futures markets is slightly more complex than trading on cash 
markets, because futures contracts have limited lifetimes. If a trader takes a 
position on a futures contract, which subsequently expires, he can take the 
same position on the next available contract. This is called “rolling forward”. 
The problem of rolling forward is that two contracts of different expiry may not 
(and invariably do not) have the same price. When the roll forward technique 
is applied to the futures time series it will cause the time series to exhibit 
periodic blips in the price of the futures contract. Whilst the cost of carry 
(which actually causes the pricing differential) can be mathematically taken 
out of each contract, this does not leave us with an exactly tradable futures 
series. 
 
In this study, since we are dealing with futures spreads, we have rolled 
forward both contracts on the same day of each month (irrespective of exact 
expiry dates). Since both contracts are on similar underlying the short leg roll 
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forward will cancel out the long leg roll forward5. We are left with a tradable 
time series with no periodic roll forward price blips. 
 
4.2 Transactions Costs 
 
Transaction costs for futures markets are a fraction of those for equity 
markets. A commission fee of $25 per round trip trade (ie. opening and 
closing a position on a single contract) has been taken from 
www.Sucden.co.uk. This is the equivalent of 0.03% of the price of Brent and 
would allow a non-member to trade the WTI-Brent spread. 
 
A much bigger consideration when trading spreads is the bid-ask spread, 
which in the case of spreads has to be covered twice in order to generate 
profits. The bid-ask spread has been taken as a single percentage of the 
investment, as in Butterworth and Holmes (2003). A bid-ask spread of 0.17% 
of the price of the futures contract underlying has been deemed reasonable. 
Therefore a figure of 0.2%6 per trade (ie. opening or closing a position on the 
spread) has been used for the total trading costs. 
 
5. Trading Rules and Time Dependency 
 
The in-sample structure of the spread is mean reverting and this should 
dictate which trading rules are deemed most appropriate. 
 
Chart 1 below shows the daily closing prices of the WTI-Brent spread for the 
in-sample period, it is evident that while the spread shows large deviations 
from the long-term equilibrium, the general pattern is one of mean reversion. 
Also shown is the rolling 30-day correlation of the spread. 

                                                 
5 The  cost of carry is the difference between the cash and futures price. This is determined by the cost 
of buying the underlying in the cash market now and holding until futures expiry. Since the cost of 
storage of both underlying is identical, they will exactly offset each other. 
6 This figure consists of a $0.03 bid ask spread per barrel and a commission fee of $25 per lot (1,000 
barrels) both have been taken from www.sucden.co.uk. 
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It is evident in the above chart that large deviations away from the long term 
average value are accompanied by large drops in correlation between the two 
legs of the spread, as shown in the highlighted circles 1, 2 and 3 above. 
Bearing this consistent feature in mind a correlation filter has been proposed. 
The idea of which is to filter out any stable pricing periods of the spread. This 
filter will be optimised in-sample to investigate the impact on annualised 
percentage returns, annualised standard deviation, maximum drawdown and 
Sharpe ratio. Various levels of the correlation filter will then be used to see the 
impact of this on annualised returns. A complete explanation of the correlation 
filter is included in section 5.5. 
 
The trading rules that are to be tested range from the cointegration “fair value” 
approach, onto traditional regression analysis, moving averages and finally 
neural networks. The trading rules and filters used are formally described 
below. 
 
5.1 Cointegration “Fair Value” Approach 
 
The cointegration “fair value” approach relies on the assumption that there is 
some underlying value for the spread, which can be considered the long-term 
equilibrium. Any movement away from this value will constitute a non-
equilibrium value and will therefore be short lived. Firstly a Johansen 
cointegration test is done to find the cointegrating vector of the in-sample 
dataset. The Johansen cointegration test for the WTI-Brent spread is shown in 
appendix 1. 
 
The in-sample cointegrating vectors are: 
 

)060353.1()00000.1( BrentWTI ×−×  
 
Using these vectors it is fairly simple to calculate the fair value of the spread 
relative to the price of either leg. This is done in the following way: 
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BrentBrentBrentWTI −×=− )060353.1( , therefore: 

)1060353.1( −×=− BrentBrentWTI  
 
Formally the fair value trading signals can be written as follows: 
If WTI<(1.060353)Brent, then go long the spread, until fair value is regained. 
If WTI>(1.060353)Brent, then go short the spread, until fair value is regained. 
 
Since we are only interested in spread mispricings that are far enough away 
from fair value for their return to fair value to net a trading profit, a filter should 
be employed. This is done in two ways. Firstly a standard filter is used. This 
dictates that we enter the market when the price of the spread is above 
(below) the fair value plus (minus) X, X being the optimised7 level of the filter. 
We then exit the market when the spread returns to the fair value price. This 
is illustrated in chart 2 below: 

 
 
The second method of filtering is the correlation filter, using this we limit our 
trading to those periods for which the correlation between the two legs of the 
spread falls below a certain level. This is further explained in section 5.5. 
 
5.2 Moving Averages 
 
The main problem with the fair value cointegration approach is that the fair 
value is stationary. This is a problem because any fundamental change in the 
underlying relationship could cause a massive drawdown resulting in the 
trader being priced out of the market. A logical extension of this model would 
be to re-estimate the fair value every day based on the most recent data. 
Whilst this would be a large undertaking for the cointegration fair value model, 

                                                 
7 The optimizing parameter for both filters was the net Sharpe Ratio. That is the earnings after costs, 
divided by the Standard Deviation. 
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a simpler method is to use an n-day moving average as a proxy for the fair 
value price. 
 
The “reverse moving average” in which the traditional rule positions are 
reversed therefore provides the trader with a dynamic model for exploring the 
situation when markets are not trending but mean-reverting, this rule should 
also help limit the potential problem of large drawdowns affecting the results.  
 
The formalism for the traditional moving average is given below: 

∑
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The trader should go long if pt>MAt, and the trader should go short if pt<MAt
Where:  
pt-n price at time t-n 
n = (1,2,…,N) 
pt price at time t 
N = number of days of moving average. 
 
The reverse moving average rule will therefore be: 
Trader should go long if pt<MAt, trader should go short if pt>MAt, with MAt 
calculated in the same way. 
The standard filter can be applied to this model in the following way: 
The trader should go long if X+pt>MAt, until moving average is regained. 
trader should go short if X-pt<MAt. until moving average is regained. 
Where; X = filter level (optimised in-sample). 
The correlation filter described in section 5.5 will also be applied to this trading 
rule and optimised. 
 
5.3 Time Series Analysis 
 
Regression analysis has for a long time been the mainstay of econometric 
forecasting techniques. With any regression analysis it is normal to start with 
some tests of normality, ARCH effects and Stationarity. The results of which 
will impact on the type of model we need to use. The ADF test on the spread 
levels showed it to be a stationary series and an ARMA(1245678,12367)8 
model was arrived at, from an initial ARMA(10,10), to model the spread. An 
ARCH test showed some evidence of ARCH effects so a GARCH(2,2) model 
has been similarly arrived at to model the spread. For complete mathematical 
explanations of the GARCH and ARMA models see Engle and Bollerslev 
(1986) and Box, Jenkins and Reinsel (1994) respectively. 
 
The models were optimised in-sample and then forecasted to include the out-
of-sample subset. Once the results were obtained they were transferred to 
Excel where the standard and correlation filters were applied. 
The standard filter was applied in the following way: 
If , then go long the spread. 1−>− t

a
t

e pXp
If , then go short the spread. 1−<+ t

a
t

e pXp

                                                 
8 This is simply an ARMA(8,8) with the 3rd auto regressive term and the 4th 5th and 8th moving average 
terms removed. 
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Where; pe
t = Estimated price for time t (estimated at t-1) 

pa
t-1 = actual price at time t-1 

X = size of filter. 
An optimised correlation filter was also applied to this trading model, as 
described in section 5.5. 
 
5.4 Neural Network Regression 
 
The most basic type of model, which is used in this paper, is the MultiLayer 
Perceptron (MLP). The network has three layers; they are the input layer 
(explanatory variables), the output layer (the model estimation of the time 
series) and the hidden layer. The number of nodes in the hidden layer defines 
the amount of complexity that the model can fit. The input and hidden layers 
also include a bias node (similar to the intercept for standard regression), 
which has a fixed value of 1. 
The network processes information as shown below: 

1. The input nodes contain the values of the explanatory variables (in this 
case 10 lagged values of the spread). 

2. These values are transmitted to the hidden layer as the weighted sum 
of it’s inputs. 

3. The hidden layer passes the information through a nonlinear activation 
function and, if the calculated value is above the threshold, onto the 
output layer. 

The connections between neurons for a single neuron in the net are shown in 
chart 3 below: 
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Chart 3: A single output, fully connected MLP model 

where: 
][n

tx  ( 1,,2,1 )+= kn L  are the model inputs (including the input bias node) at 
time t 

][m
th  ( 1,...,2,1 )+= mm  are the hidden nodes outputs (including the hidden bias 

node) 
ty~       is the MLP model output 
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jku  and     are the network weights jw

      is the transfer sigmoid function: ( ) xe
xS −+
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     is a linear function:  ( ) ∑=
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The error function to be minimised is: 
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wuE  with yt being the target value. 

The training of the neural network is of utmost importance, since it is possible 
for the network to learn the training data subset exactly (commonly referred to 
as overfitting). For this reason the network training must be stopped early. 
This is achieved by dividing the dataset into 3 different components (as shown 
in section 3). Firstly a training subset is used to optimise the model, the “back 
propagation of errors” algorithm is used to establish optimal weights from the 
initial random weights. 
 
Secondly a test subset is used to stop the training subset from being 
overfitted. Optimisation of the training subset is stopped when the test subset 
is at maximum positive return. These two subsets are the equivalent of the in-
sample subset for all other models. This technique will prevent the model from 
overfitting the data whilst also ensuring that any structure inherent in the 
spread is captured. 
 
Finally a validation subset is used to simulate future values of the time series, 
which for comparison is the same as the out-of-sample subset of the other 
models. 
 
Since the starting point for each network is a set of random weights, we have 
used a committee of ten networks to arrive at a trading decision (the average 
change estimate decides on the trading position taken). This helps to 
overcome the problem of local minima effecting the training procedure. The 
trading model predicts the change in the spread from one closing price to the 
next, therefore the average result of all trading models was used as the 
forecast of the change in the spread.  
 
The standard filter applied to this model was to stay out of the market if the 
predicted change in the spread was smaller in magnitude than X, X being the 
optimised filter level. A correlation filter as described in section 5.5 was also 
applied to this model and optimised. 
 
5.5 The Correlation Filter 
 
As well as the application of a standard filter, we also filtered the spreads in 
terms of correlation. This is presented as a new methodology to filter trading 
rule returns on spread markets. The idea is to enable the trader to filter out 
periods of static spread movement (when the correlation between the 
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underlying legs is increasing) and retain periods of dynamic spread movement 
(when the correlation of the underlying legs of the spread is decreasing). This 
was done in the following way. 
 
A rolling Z-day correlation is produced from the two legs of the spread. The Y-
day change of this series is then calculated. From this a binary output of either 
0 if the change in the correlation is above X, or 1 if the change in the 
correlation is below X. X being the filter level. This is then multiplied by the 
returns series of the trading model. 
 
By using this filter it should also be possible to filter out initial moves away 
from fair value which are generally harder to predict than moves back to fair 
value. Chart 4 below shows the entry and exit points of the filter. 

 
Chart 4 shows that we enter the market the day after the correlation falls and 
exit the market the day after the correlation rises. Doing this we can not only 
filter out periods when the spread is stagnant, but also the initial move away 
from fair value, which is less predictable than the move back to fair value. 
 
There are several optimising parameters, which have been used for this type 
of filter, namely the length of correlation lag, period of correlation drawdown 
and amount of correlation drawdown (labelled Z, Y and X respectively).  
 
6. Results 
 
The results for all trading models used are shown in tables 1 to 5 below. The 
first two rows of the table illustrate the effectiveness of the trading rule without 
any trading filters in place. The middle two rows of the table show the trading 
rule performance with the application of a standard filter as described in the 
trading rule subsections. The final two rows indicate the performance of the 
trading rule with the application of the correlation filter, as described in section 
5.5. 
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The three right hand columns show the parameters used in optimising the 
filter. For the trading rule with no filter there are obviously no optimising 
parameters. For the standard filter there is one optimising parameter, which is 
the level of the filter. For the correlation filter we have three optimising 
parameters, which are; the filter level (or amount of correlation change), the 
period over which the correlation change takes place and the initial correlation 
series length (labelled X, Y and Z). 
 
Table 1 below shows the results of the “Fair Value” model similar to that used 
by Butterworth and Holmes (2003). It is evident that the standard filter  
improves both the in-sample and out-of-sample performance of the trading 
rule in terms of the Sharpe ratio and the Drawdown.  
 
The correlation filter improves the model but is slightly out performed by the 
standard filter in terms of out of sample Sharpe ratio. We can however note 
here a significant fall in the drawdown in the case of the correlation filter. 
 
Table 1 - Fair Value Cointegration Model     Parameters   

Period Filter Returns Drawdown Stdev Sharpe Ann. Trades Level(X) Period(Y) Cor. Length(Z)
In-Sample none 31.47% -12.45% 22.58% 1.39 22.69 - - - 

Out-of-Sample none 28.51% -9.12% 17.53% 1.63 25.93       

In-Sample Standard 31.42% -11.97% 22.11% 1.42 21.41 0.12 - - 

Out-of-Sample Standard 28.66% -9.12% 17.29% 1.66 28.59       

In-Sample Correlation 29.17% -9.69% 17.83% 1.64 22.69 0.0001 2-Days 14-Days 

Out-of-Sample Correlation 20.85% -8.61% 12.63% 1.65 25.93       

 
Table 2 below shows the trading statistics of the MACD model. The MACD 
model finally arrived at was the single 20-day reverse moving average model. 
This model shows a distinct improvement over the Fair value model, having 
higher Sharpe ratio and lower out-of-sample drawdown. 
 
With the application of the standard filter the MACD model performance does 
improve. There are slight improvements in the returns and the standard 
deviation. Conversely the application of a correlation filter shows no 
improvement over the un-filtered model indicated by a lower out-of-sample 
Sharpe ratio and a bigger Drawdown. 
 
Table 2 - MACD Model       Parameters   

Period Filter Returns Drawdown Stdev Sharpe Ann. Trades Level(X) Period(Y) Cor. Length(Z)
In-Sample None 40.71% -13.45% 21.65% 1.88 48.18  -  -  - 

Out-of-Sample None 33.24% -7.08% 18.05% 1.84 41.75       

In-Sample Standard 40.77% -13.45% 21.45% 1.90 51.40 0.02  -  - 

Out-of-Sample Standard 33.79% -7.12% 18.01% 1.88 42.75       

In-Sample Correlation 40.76% -13.45% 21.48% 1.90 52.84 0.049 1-Day 30-Days 

Out-of-Sample Correlation 29.74% -8.35% 17.91% 1.66 45.77       

 
Table 3 below shows the summary statistics for the ARMA model, the model 
in question is an ARMA(1245678,12367), which was arrived at from an 
ARMA(10,10) model. The use of this model is justified giving returns well in 
excess of the Fair Value model. The application of the standard filter shows 
no improvement in any out-of-sample statistics. The correlation filter shows a 
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slight improvement in in-sample trading performance over the un-filtered 
model, but the effect of the filter is too small to change the out-of-sample 
performance. 
 
Table 3 - ARMA Model      Parameters  

Period Filter Return DrawDown Stdev Sharpe Ann. Trades Level(X) Period(Y) Cor. Length(Z)

In-Sample None 41.63% -16.17% 21.24% 1.96 88.89 - - - 

Out-of-Sample None 34.94% -9.08% 17.32% 2.02 58.15       

In-Sample Standard 41.63% -16.17% 21.24% 1.96 88.89 0 - - 

Out-of-Sample Standard 34.94% -9.08% 17.32% 2.02 58.15       

In-Sample Correlation 41.70% -13.45% 21.19% 1.97 90.93 0.07 1-Day 30-Days 

Out-of-Sample Correlation 34.94% -9.08% 17.32% 2.02 58.15       

 
Table 4 below shows the trading statistics for the GARCH trading model, the 
model in question being a GARCH(2,2). The use of this model cannot be 
justified over a Fair Value model since this model exhibits a far worse out-of-
sample Sharpe ratio than the Fair Value model. Further the application of the 
standard filter provides us with no improvement in results. The application of 
the correlation filter does improve the results slightly but this is still a very poor 
out-of-sample performance. 
 
Table 4 - GARCH Model     Parameters  

Period Filter Return DrawDown Stdev Sharpe Ann. Trades Level(X) Period(Y) Cor. Length(Z)
In-Sample None 33.30% -16.49% 21.30% 1.56 94.09 - - - 

Out-of-Sample None 10.56% -11.33% 17.42% 0.61 82.71 -     

In-Sample Standard 25.18% -14.71% 18.18% 1.39 105.10 0.068 - - 

Out-of-Sample Standard 8.50% -12.43% 15.25% 0.56 124.06       

In-Sample Correlation 34.10% -18.53% 21.27% 1.60 97.25 0.06 1-Day 30-Days 

Out-of-Sample Correlation 10.87% -12.36% 17.41% 0.62 84.00       

 
Table 5 below shows the trading statistics of the Neural Network Regression. 
Surprisingly the Fair Value model outperforms this model, and its use cannot 
be justified. The plus point of this model is that it does respond well to filters, 
showing marked improvements in the out-of-sample Sharpe ratio in the case 
of both filters. 
 
Comparing both filters we can see that the correlation filter shows a significant 
improvement in out-of-sample performance over the standard filter, with 
higher returns and Sharpe ratio and lower drawdown and standard deviation. 
The poor level of return is obviously badly affected by the high number of 
trades, and therefore trading costs, when compared to any other model. 
 
Table 5 - Neural Network Regression     Parameters  

Period Filter Return Drawdown Stdev Sharpe Ann. Trades Level(X) Period(Y) Cor. Length(Z)
In-Sample none 21.32% -32.58% 20.90% 1.02 154.89 - - - 

Out-of-Sample none 22.35% -29.33% 17.86% 1.25 151.81       

In-Sample Standard 26.86% -21.22% 19.43% 1.38 122.53 0.022 - - 

Out-of-Sample Standard 23.57% -23.18% 16.70% 1.41 120.83       

In-Sample Correlation 28.56% -20.64% 20.13% 1.42 105.47 0.01 1-Day 30-Days 

Out-of-Sample Correlation 26.64% -26.94% 17.40% 1.53 127.55       
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7. Concluding Remarks 
 
It is evident from the above tables that the Fair Value model whilst popular 
with academics does not capture the structure of the WTI-Brent spread as 
well as an ARMA model. Saying this, the Fair Value model did perform 
surprisingly well and was the second best model type tested. A further point of 
note is that an ARMA model out performed the ANN model, which is regarded 
by many academics as “state of the art”. The reason for this becomes obvious 
when the trading costs are considered. The ARMA model has annualised 
trades of between 58.15 and 90.93. The ANN model on the other hand has 
annualised trades of between 105.47 and 154.89. This is a significant 
increase and can be blamed, in part, for the ANN model’s poor showing. This 
is particularly evident in spreads where two sets of trading costs have to be 
covered. 
 
In the case of 4 out of 5 of the models tested, the act of filtering improved the 
results, with the correlation filter being the best filter type in 2 of these 4, 
vindicating the idea of the correlation filter as an alternative to the standard 
filter for some trading models. 
 
It is therefore concluded that for this spread, the correlation filter can, in some 
cases, improve the performance of trading rules over and above the 
performance of both the un-filtered model and the standard filtered model. 
Further, it is concluded that the use of the Fair Value cointegration model is 
vindicated, but that a better performing model is the ARMA model illustrated 
here.  
 
Finally we conclude that the correlation filter can provide traders with a useful 
way of improving the performance of spread trading models and subsequently 
should be studied further, with further research concentrating on the 
application of a combination, or hybrid, filter. 
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Appendix 1 – Johansen Cointegration Test 
 
Date: 07/05/04   Time: 15:24 
Sample(adjusted): 8 1959 
Included observations: 1952 after adjusting endpoints 
Trend assumption: No deterministic trend 
Series: BRENT WTI  
Lags interval (in first differences): 1 to 4 

     
Unrestricted Cointegration Rank Test 
Hypothesized  Trace 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 

None **  0.030592  60.65109  12.53  16.31 
At most 1  1.80E-06  0.003509   3.84   6.51 

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Trace test indicates 1 cointegrating equation(s) at both 5% and 1% levels 

     
Hypothesized  Max-Eigen 5 Percent 1 Percent 
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value 

None **  0.030592  60.64758  11.44  15.69 
At most 1  1.80E-06  0.003509   3.84   6.51 

 *(**) denotes rejection of the hypothesis at the 5%(1%) level 
 Max-eigenvalue test indicates 1 cointegrating equation(s) at both 5% and 1% 
levels 

     
 Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=I):  

BRENT WTI    
-1.309067  1.234557    
 0.034583  0.012068    

     
 Unrestricted Adjustment Coefficients (alpha):  

D(BRENT)  0.016666  0.000644   
D(WTI) -0.057688  7.88E-05   

     
1 Cointegrating Equation(s):  Log likelihood -1981.793  
Normalized cointegrating coefficients (std.err. in parentheses) 

BRENT WTI    
 1.000000 -0.943082    

  (0.00436)    
     

Adjustment coefficients (std.err. in parentheses) 
D(BRENT) -0.021816    

  (0.01454)    
D(WTI)  0.075517    

  (0.00980)    
     

 

16/18 



  
References 
 
Billingsley, R. and Chance, D. (1988), the Pricing and Performance of Stock 
Index Futures Spreads, Journal of Futures Markets, 8, 303-318. 
 
Board, J. and Sutcliffe, C. (1996), The Dual Listing of Stock Index Futures: 
Arbitrage, Spread Arbitrage and Currency Risk, Journal of Futures Markets, 
16, 29-54. 
 
Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994), Time Series Analysis: 
Forecasting and Control, Third Edition, Englewood Cliffs, NJ: Prentice Hall, 
197-199.  
 
Butterworth, D. and Holmes, P. (2003), Mispricings in Stock Index Futures 
Contracts: Evidence For FTSE100 and FTSEmid250 Contracts, Working 
Papers Series in Economics and Finance, University of Durham. 
 
Chen, W., Wagner, L. and Lin, C. H. (1996), Forecasting the 30-year U.S. 
Treasury Bond With a System of Neural Networks, NeuroVe$t Journal, 
Jan/Feb 96. 
 
Chung, Y. P. (1991), A Transactions Data Test of Stock Index Futures Market 
Efficiency and Index Arbitrage Profitability, Journal of Finance, 46, 1791-1809. 
 
Dunis, C. (1989), Computerised Technical Systems and Exchange Rate 
Movements, Edited by M. Feeny, Exchange Rate Forecasting, Probus 
Publishing Company, Cambridge, UK, 165-205. 
 
Engle, R. and Bollerslev, T. (1986), Modeling Persistence of Conditional 
Variances, Economic Review, 5-50. 
 
Francis, J. C. and Wolf, A. (1991), On The Theory Of Spreading, Edited by A 
Chen, A Research Annual, Greenwich, Conn. And London: JAI Press, 9, 171-
85. 
 
Kaastra, I. and Boyd, M. (1995), Designing a Neural Network for Forecasting 
Financial and Economic Time Series, Neurocomputing, 10, 215-236. 
 
Lindemann, A. Dunis, C. and Lisboa, P. (2004), Probability Distributions and 
Leveraged Strategies: An Application of Gaussian Mixture Model to the 
Morgan Stanley High Technology 35 Index, CIBEF Working Papers, 
www.cibef.com. 
 
Lindemann, A. Dunis, C. and Lisboa, P. (2003), Level Estimation, 
Classification and Probability Distribution Architectures for Trading the 
EUR/USD Exchange rate, Neural Computing and Applications, Forthcoming. 
 
Lukac, L. and Brorsen, B. (1990), A Comprehensive Test of Futures Market 
Disequilibrium, The Financial Review, 25, 4, 593-633. 

17/18 

http://www.cibef.com/


 
Mackinlay, C. and Ramaswamy, K. (1988), Index Futures Arbitrage and The 
Behaviour of Stock Index Futures Prices, Review of Financial Studies, 1, 137-
158. 
 
Meland, L. (1981), Futures Market Liquidity and The Technique of Spreading, 
Journal of Futures Markets, 1, 405-411. 
 
Peterson, R. (1977), Investor Preferences for Futures Straddles, Journal of 
Financial and Quantitative Analysis, 12, 105-120. 
 
Pruitt, S. W. and White, R. E. (1988), The CRISMA Trading System: Who 
Says Technical Analysis Can’t Beat the Market?, Journal of Portfolio 
Management, 14, 55-58. 
 
Sullivan, R. Timmerman, A. and White, H. (1998), Datasnooping, Technical 
Trading Rule Performance and the Bootstrap, Journal of Finance, 55, 5, 1647-
1691 
 
Sweeney, R. J. (1988), Some New Filter Rule Tests: Methods and Results, 
Journal of Financial and Quantitative Analysis, 23, 285-300. 
 
Tucker, S. (2000), Spreading the Wealth, www.Futuresmag.com, January 
2000. 
 
Working, H. (1949), The Theory of Price of Storage, American Economic 
Review, 39, 1254-1262. 
 
Yadav, P. K. and Pope, P. F. (1990), Stock Index Futures Arbitrage: 
International Evidence, Journal of Future Markets, 10, 573-604. 

18/18 


	Abstract
	Introduction
	Literature Review
	Data
	Methodology
	Trading Rules
	Concluding Remarks
	References

